
SoC Security Verification
Mark Tehranipoor and Farimah Farahmandi

Florida Institute for Cybersecurity Research

University of Florida

Download the slides from: http://farimah.ece.ufl.edu/CADforSecurity

http://farimah.ece.ufl.edu/CADforSecurity

All Rights Reserved

Problem Statement

Design Flow

Supply Chain

Hardware Attacks

Need for Automation

CAD for Security Demos

Challenges

Outline

2

All Rights Reserved 3

DSP

Memory RF Microcontroller Audio, D/A, A/D

RF TX & RX

Amplifier

VLSI Integration

IoT Devices

Mobile Devices

All Rights Reserved

Modern SoCs – Heterogeneous Architecture

4
@Chipworks

• TSMC's 16 nm FinFET

• 3.3 billion transistors

• Die size: 125 mm2

Apple A10 Quad Core SoC

All Rights Reserved 5

SoC’s Growth

Year of Introduction

T
ra

n
s
is

to
r

C
o
u
n
t

All Rights Reserved 6

SoC Market Size

SoC’s Growth

All Rights Reserved

High complexity of devices

Tens of billions transistors

Aggressive time-to-market

requirements

Severely constrains functional validation →

vulnerability escapes to silicon or in-field

High diversity in computing devices

Security requirements vary significantly

Cannot be “pre-verified” at the IP level

Connectivity

More SoCs being connected → not originally

designed to be connected

Design Challenges

7

Contains 3.3

Billions of transistors

Shrunk to less

than a year →

mobile device

Everything is

connect to Internet

All Rights Reserved

Design Flow

8

IP

Vendor

SoC

Designer

DFT

Vendor

GDSII

Fab

Fabrication
Physical

Layout

Synthesis

DFT & DFD End

Product

ENTITY IP
port K1: in;
port K2: in;

end ENTITY

SoC

Integrator

IP

Vendor

Assembly

All Rights Reserved

3PIP providers

Working under aggressive schedules → design mistakes, poor IP validation

Can insert malicious implants (hardware Trojans)

CAD tools

Not equipped with understanding security vulnerabilities

Vulnerabilities during optimization, synthesis, DFT, etc.

Foundry

Access to the entire design → hardware Trojan, Counterfeit

Counterfeits → low-quality clones, overproduced chips in untrusted foundry

Security & Trust Issues: Supply Chain

9

All Rights Reserved

Challenges

10

Aggressive time-

to-market

Tens of IPs from

3P vendors

Tens of billions

transistors

Many

custom/legacy

functionality

Designed around

the globe

Many security

critical assets

Ensuring security is a challenge

All Rights Reserved

HW Attacks

Trojans Untrusted Foundry Counterfeit ICs Physical Attack

Reverse EngineeringFault Injection AttacksSide-channel Attacks Counterfeit/Fake Parts

All Rights Reserved

Impact: HW Security Compromise

12

HardwareOSApplicationUser

~1K

~100K

~10M

~1B

Social

engineering

(phishing)

Malwares

(information

harvesting)

Virus/ Trojan

(Hijacking/

DDoS)

Hardware

compromise

(low grade/

backdoor)

Relative Impact

All Rights Reserved

Intel sells off for a second day as

massive security exploit shakes the

stock

Jan 4, 2018

Intel Facing 32 Lawsuits Over Meltdown

and Spectre CPU Security Flaws

The company accused of selling Apple

and Amazon data servers

compromised by Chinese spies is

getting crushed — it's lost half of its

value today

Impact of Hardware Compromise

All Rights Reserved

Consider security from very beginning

Identify what needs to be protected (assets, IPs,)

Evaluate right level of security for each asset

A door may be sufficient to protect cloths, but a safe should be

needed to protect jewelry

Identify potential vulnerabilities

Need to develop a vulnerability database

Analyze if vulnerabilities exists

Need to develop CAD tools for security assessment

Develop proper countermeasures

14

Security from the

start

Building a Secure Design

Security assessment

All Rights Reserved

Security along Design Life-cycle

15

Alg/Arch. Planning ProductionSpecification Integration (RTL→Layout) Tape-out / Silicon

Define

Assets

Identify

Vulnerabilities

Define

Rules/ Metrics

Pre-silicon

Assessment

Post-silicon

Validation

Pre-Silicon Post-Silicon

3PIPs

IPs

RTL Netlist Layout GDSII

Fab

D
F

T
/D

F
D

In
s
e
rtio

n

S
y
n

th
e
s
is

P
h

y
s
ic

a
l

D
e

s
ig

n
Gate Level Netlist Physical LayoutRegister Transfer

Level

All Rights Reserved

Asset: A resource of value worth protecting from an adversary

Source: Intel

Security Assets in SoCs:

On-device keys (developer/OEM)

Device configuration

Manufacturer Firmware

Application software

On-device sensitive data

Communication credentials

Random number or entropy

E-fuse,

PUF, and more…

16

Security Assets

All Rights Reserved

On device key: Secret encryption key material

permanently embedded on the device

Confidentiality violated if compromised

Random Number/Entropy: Cryptographic primitives rely

on a good quality and unbiased random number generator

Weaken cryptographic algorithms if tampered

On-device sensitive data: Information about the user

credential, meter readings, counters

Privacy violated if compromised/tampered

Chip manufacturer's code: Low level program

instructions, proprietary firmware

17

Assets

All Rights Reserved

Security along SoC Design Life-cycle

18

CAD for Security

All Rights Reserved

Manual Security Assessment

Certification Schemes: Security verification by an independent official 3rd party

Example: payment Card Industry (PCI-DSS and PTS Finance industry)

Process overview:

Suffer from various flaws

Security review depends greatly on the experience

No proof that the design is secure against possible attack scenarios

Current Practices

19

Security claims 3P Assessment Final report

All Rights Reserved

Automation made design of modern ICs possible

Tools made design of chips optimized for different applications

possible, i.e., optimized for power, performance, and area

Metrics played major role

Power

Performance

Area

Testability

Automation

20

All Rights Reserved

Security is a generic term

Vulnerabilities are quite diverse

No silver bullet and no one size fits

all

Relying on SMEs is no longer

possible

There is a lack of understanding of

security issues by designers

Emerging vulnerabilities

How quickly one can understand

it? Mitigate it?

Best to be automated

Focus on the known vulnerabilities

Automation

21

Untrusted Foundry

Physical AttackFault Injection Attacks

Side-channel Attacks

All Rights Reserved

Automation

No comprehensive solution to guide security

check for SoCs

Cost of fixing vulnerabilities found at later stages

is significantly higher – Rule of 10

Unlike software or firmware → no flexibility in

changing or releasing post-shipment patches

for hardware

Identify security issues during design phase

Address them as early as possible in the design

process

22

RTL Gate Level

Silicon Validation

Layout Level

In-field

All Rights Reserved

A comprehensive framework for analyzing known

security issues in SoCs

DSeRC framework:

reads the design files, constraints, threat model, and user

input data

checks for vulnerabilities at all levels of abstraction (RTL,

gate, layout, and architectural levels)

Each vulnerability is tied with a set of rules and
metrics → security can be quantitatively measured

Security Assessment

23

All Rights Reserved

Security Assessment

24

CAD for Security

Assessment

Rules & Metrics

Vulnerabilities

All Rights Reserved

Security Assessment

25

CAD for Security

Assessment

Rules & Metrics

Vulnerabilities

All Rights Reserved

Comprehensive Vulnerability Database

26

Alg/Arch. Planning ProductionSpecification Integration (RTL→Layout) Tape-out / Silicon

Pre-Silicon Post-Silicon

3PIPs

IPs

RTL Netlist Layout GDSII

Fab

D
F

T
/D

F
D

In
s
e
rtio

n

S
y
n

th
e
s
is

P
h

y
s
ic

a
l

D
e

s
ig

n
Gate Level Netlist Physical LayoutRegister Transfer

Level

• Information Leakage

• Side Channel Leakage

• IP Tampering

• Information Leakage

• Side Channel Leakage

• Fault Injection Attacks

• IP Tampering

• Side Channel Leakage

• IP Tampering

• Physical Attacks

• Tampering

• Overproduction

All Rights Reserved

Sources of Vulnerabilities

Design Issues

Unintentionally created by (i) designer’s mistakes, (ii)

designer’s lack of understanding of security problems

and requirements in a complex SoC.

Confidential IP core

Untrusted IP cores

RTL Design

Synthesized Design

Synthesis tools “melt” the IP cores into one circuit –
Circuit Flattening

27

T. Huffmire et al., Moats and Drawbridges: An Isolation Primitive for Reconfigurable Hardware Based Systems

, ieee-sp'07.

CAD Tools

Tools are designed to focus on power, performance,

and area

Can introduce vulnerabilities during

optimization/synthesis – leak information

All Rights Reserved

Sources of Vulnerabilities

DFT and DFD Structures

The increased controllability and observability added

by DFT and DFD structures can create additional

vulnerabilities

28

Black and White Hats

Side channel attacks, fault injection attacks, information
leakage, IP issues, and more

Vulnerabilities

All Rights Reserved

Trust-Hub / TAME Vulnerability Database

29

An effort by industry and academic research leaders to provide awareness to

researchers and practitioners of hardware security on SoC vulnerabilities

Goal:

Develop the National Hardware Vulnerability Database (NHVD) to be shared with the

potential of being used as a standard approach for enumerating and screening of various

dimensions of security risks for SoCs

All Rights Reserved

Trust-Hub Vulnerability Database

30

All Rights Reserved

Security Assessment

31

CAD for Security

Assessment

Rules & Metrics

Vulnerabilities

All Rights Reserved

Abstraction Levels

32

IP Level: Vulnerabilities

considered in modular basis at

RTL, gate, and physical layout

levels

SoC Level: Vulnerabilities

considered from system (e.g.,

SoC) level perspective –

interaction between different

cores

All Rights Reserved

Vulnerabilities and Rules

Vulnerability: Asset leakage

Rule: An asset should never propagate to any location where an attacker can observe it

asset secure area

secure

area

33

SoC

Source: Jasper

All Rights Reserved

More Examples of Rules

uP in user mode should never access

OS kernel memory

During crypto operation reset, reading

intermediate results, changing keys,

and data operations are prohibited

During cryptographic asset (e.g. key)

transfer from the system memory to the

crypto-core registers, all other IP

accesses to the bus are disabled

34

The power management module can enable a modification in the clock

frequencies only when the core is not in active mode

During debug, no accesses are allowed to the security critical part of memory

Source: Jasper

All Rights Reserved

Vulnerability Metric Rule Attack (Attacker)

RTL

Level

Dangerous Don't Cares
Identify all 'X' assignments and check if 'X'

can propagate to observable outputs

'X' assignments should not be propagated to

observable output
Hardware Trojan (Insider)

Hard-to-control & hard-to-observe

Signals

Statement hardness and signal

observability

Statement hardness (signal observbility) should

be lower (higher) than a predefined threshold
Hardware Trojan (Insider)

Asset leakage Structure checking and IFT
Security sensitive assets should not be exposed

to observable points
Asset hacking (End user)

….

Gate

Level

Hard-to-Control & hard-to-

observe Nets
Net controllability and observability

Controllability and observability should be

higher than a threshold value
Hardware Trojan (Insider)

Vulnerable FSM
Vulnerability factor of fault injection (𝑽𝑭𝑭𝑰)
and Trojan insertion (𝑽𝑭𝑻𝒓𝒐)

𝑽𝑭𝑭𝑰 and 𝑽𝑭𝑻𝒓𝒐 should be zero
Fault injection, Hardware

Trojan (Insider, end user)

Asset Leakage Confidentiality and integrity assessment
Assets should not be leaked through observable

points
Asset hacking (End user)

Design-for-Test (DFT),

JTAG/IJTAG Vulnerabilities
Confidentiality and integrity assessment

Assets should not be leaked or accessed

through DFT structure
Asset hacking (End user)

Design-for-Debug structure

Vulnerabilities
Confidentiality and integrity assessment

Assets should not be leaked or accessed

through DFD structure
Asset hacking (End user)

…..

Layout

Level

Side-Channel Leakage Side-channel vulnerability (SCV) SVF should be lower than a threshold value
Side-channel attack (End

user)

Microprobing Vulnerability

Exposed area of the security-critical nets

which are vulnerable to microprobing

attack

The exposed area should be lower than a

threshold value

Micro-probing attack

(Professional attacker)

Trojan Insertion – unused space Unused space analysis
Unused space should be lower than a threshold

value
Untrusted foundry

…..

Vulnerabilities, Metrics and Rules

35

All Rights Reserved

Security Assessment

36

CAD for Security

Assessment

Rules & Metrics

Vulnerabilities

All Rights Reserved

Trust-Hub CAD for Security

37

All Rights Reserved

CAD for Security

38

C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG)

• EM Leakage Assessment

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks

• Power Side-channel Leakage Assessment (TVLA)

All Rights Reserved

CAD for Security

39

C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG)

• EM Leakage Assessment

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks

• Power Side-channel Leakage Assessment (TVLA)

All Rights Reserved 40

HLS Overview

• High-Level Synthesis (HLS) translates high-level C/C++

code to HDL-level VHDL/Verilog. Advantages:

• reduced time-to-market

• easier implantation of complex RTL designing

• suitable for Crypto modules, Machine Leaning, and AI

• However, due to prioritizing performance, the security

aspects are overlooked in specific scenarios

• This tool explores some of the security vulnerabilities

introduced by HLS

Constraints

Specifications

Library

Compilation

Intermediate

Representation

Selection Allocation

Binding Scheduling

FSM extraction &

RTL generation

High-Level Synthesis steps

All Rights Reserved

Throughput

Optimizations

Latency

Optimizations

Area

Optimizations

Power

Optimizations

• Efficient Pipeline.

• Reducing initiation interval.

• Parallel scheduling.

• Generate combinational logic.

• Optimize multicycle algorithmic

trees.

• Use registers without reset or

preset.

• Share hardware resources..

• Scheduling operations to

reduce switching activity.

• Improper scheduling.

• Shared hardware resources between secret

and non-secret asset.

• Unsynced pipeline between secret and non-

secret asset.

• Flattening/In-lining of functions.

• Insecure control FSMs.

• Presence of redundant logic.

• Registers with no resets.

• Registers with no preset.

• Passthrough primary outputs.

• Insecure IO call methods.

HLS-related Potential Hardware Vulnerabilities

All Rights Reserved 42

Workflow

HLS Compiler

(Vivado/Catapult)

C/C++

VHDL/

Verilog

Input Design

Output

Sequential

Flexible
(parallel, sequential,

partial unroll)

Optimizations

Constraints
(Clock, Latency,

Mem. Archi.)

Library

(area, timing)

Creating Test

Cases

Identifying

Vulnerabilities

• The first step is to use benchmark designs (C/C++) as

input to HLS compiler

• The compiler outputs the HDL form of the design

• This HDL is simulated with suitable test conditions

• Assessing if any kind of security vulnerability can be

found

• Common vulnerabilities: confidentiality and integrity
violations (e.g., information leakage, and inadequate
access control)

Use suitable

testbenches

All Rights Reserved 43

HLS Vulnerability Detection

Demo

All Rights Reserved

Demo Video

All Rights Reserved

CAD for Security

45

C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG)

• EM Leakage Assessment

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks

• Power Side-channel Leakage Assessment (TVLA)

All Rights Reserved

Susceptibility to Trojan Insertion

46

Sections in a circuit with low controllability and

observability are considered potential areas for implementing

Trojans

Metrics:

Statement hardness: Difficulty of executing a statement

Observability: Difficulty of observing a signal

Rule 1: Statement hardness of each statement should be

lower than a predefined threshold

Rule 2: Observability of each observable signal should be

higher than a predefined threshold

High Statement
Hardness

Low Observable
Point

All Rights Reserved

Susceptibility to Trojan Insertion

47

Application of the Tool:

Can be used to determine which parts of a circuit are more susceptible to Trojan insertion

Can be used to track and identify malicious part included in the code by a rogue

employee (insider threat)

Statement weight analysis. Statement hardness for b05.

All Rights Reserved

CAD for Security

48

C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG)

• EM Leakage Assessment

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks

• Power Side-channel Leakage Assessment (TVLA)

All Rights Reserved

Motivation

• Goal: Given a RTL design, we need to generate test for covering all suspicious targets

49

func (a) {

if (a == 5)

activate Trojan

else

normal operation

}

• Small program – Doable

• Large program – Hard

• RTL designs - Harder (complex designs, concurrency, multiple clock domain etc.)

• Trojans - Even harder (Occurs only on extremely rare scenarios)

Manual Test Writing

Target
We want to generate

test case to cover

target

Trigger

Start

All Rights Reserved

Test Generation for Hardware Trojan Detection

• Problem:

• Threat: Hardware Trojan inserted in a RTL design that leaks an asset to the outside world.

• Finding Test patterns that trigger the Trojan.

• Rareness of certain regions of code is our metric to find candidates.

• The WhiteBox vs BlackBox.

• Tradeoff between scalability and coverage.

50

Random Pattern Generation Formal methods

Symbolic ExecutionKLEE Concolic testing

All Rights Reserved

Test Generation Steps

• Formal methods are not scalable and random test generation does not provide good

coverage → Symbolic Execution.

• Steps in obtaining the trigger patterns:

• Step 1: Instrumentation of the RTL code and Translating it to C level

• Step 2: Random simulation for sufficient cycles to identify rare branches.

• Step 3: Translating the rare branches to KLEE assertions.

• Step 3: Symbolic execution with Cone of influence analysis to cover the assertions.

• Step 4: Test pool of all the test patterns that are candidates for Trojan trigger.

All Rights Reserved

Test Generation for Hardware Trojan Detection

• Symbolic execution generates the test patterns by using a SMT solver at its core.

• The Platform was tested on AES trojan inserted designs.

52

All Rights Reserved 53

Test Generation Demo

All Rights Reserved

Demo Video

All Rights Reserved

CAD for Security

55

C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG)

• EM Leakage Assessment

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks

• Power Side-channel Leakage Assessment (TVLA)

All Rights Reserved

Objective and Motivations

• Side-channel attacks have been a major concern to security community

• Side-channel countermeasures and leakage assessment have been studied

• However, they mostly focus on post-silicon side-channel assessment

• Difficult to find the leakage sources or modules

• Too expensive in modifying designs to address leakage issues

• Two proposed frameworks PSC-Sim/TG to fulfill side-channel assessment at RTL

• Leakage evaluation at the earliest phase allows more flexibility

• Technology independent analysis

• CAD tools for flow automation

All Rights Reserved

Overview: PSC-Sim

KL Divergence Metric

• For any two given secret keys, metric helps to

visualize by how much the power distribution

functions (PDFs) associated with the keys differ.

• Larger the distance, higher probability of an

attacker guessing the key correctly in fewer

number traces by performing differential power

analysis.

• Exhaustive testing for all the key-pairs at

design-level is time consuming, hence key pairs

are intelligently selected.

• Exhaustive testing at modular-level is done to

test for all possible secret inputs to the block. It

also helps to replicate the scenario where

intrinsic noise from other modules hide the

vulnerable block which attacker may exploit after

pre-processing of power traces post-silicon.

All Rights Reserved

Identifying Power Leakage

• Total power KL Divergence between key pairs

all 0’s and all F’s.

• KL divergence of more than 0.03 shows that

there is more than 90% probability of attacker

able to distinguish between key pairs by side

channel analysis.

All Rights Reserved

Identification of Vulnerable Module

• It can be seen that framework is able to identify the Sbox and mix column modules as leaky.

AES-GF Design: Vulnerable module

identification

AES-LUT Design: Vulnerable module

identification

Worst-case Key Pair

Key0: 0x0000_0000_0000_0000

Key2: 0xFFFF_FFFF_FFFF_FFFF

All Rights Reserved

PSC Improvement at Module-Level

• Unprotected LUT-Sbox Module is

replaced with threshold

implementation of Sbox.

• Top-Left: Power distribution

functions for different subkeys in the

normal AES Sbox Module.

• Top-Right: Power distribution

functions for different subkeys in the

Sbox with TI implementation.

• Bottom-Left: KL divergence between

every possible subkey pair for

unprotected Sbox.

• Bottom-Right: KL divergence

between every possible subkey pair

for Sbox-TI.

White spaces reflect the KL divergence for the particular keypair is less than 0.3

All Rights Reserved

PSC Improvement at Design-level

• The unprotected Sbox is replaced
with Sbox-TI.

• The generation of random bytes in
the design also lead to additional
switching. Thus, reducing SNR.

• Figure shows the total power KL
divergence between key pairs all 0’s
vs all F’s.

• Since KL divergence is less than
0.03 it can be fairly assumed that it
will challenging for an attacker to
distinguish between the key pairs.

All Rights Reserved

Overview: PSC-TG

• PSC-TG framework

• Goal: Deriving few patterns to cause worst-case scenario in terms of PSCL for the target

design and calculate metrics for PSCL assessment

• Overview

• Target properties definition

• RTL information flow tracking

• Pattern generation

• Metrics calculation for non-masked implementations -> SCV metric

All Rights Reserved

Target Variable Identification

• Target variables identification

• Aim: identify the variables which satisfy all four properties

• Method: RTL IFT with Jaspergold SPV

• Starting from key bits -> check tainted variables cycle-by-cycle -> potential target variables

• If other 3 properties are also satisfied -> target variables

All Rights Reserved

Pattern Generation

• Pattern generation

• Aim: derive the patterns which can cause worst-case scenario

• Method: Formal verification with Jaspergold FPV

• HW model: HW(TVs) at Nth round != specified value

• HD model: HD(TVs) at Nth and (N-1)th round != specified value

• Derived patterns will be reported in the counterexample

All Rights Reserved

SCV Metric Calculation

• SCV metric calculation for non-masked design

• Signal-noise-ratio (SNR) is popular at post-silicon assessment

• Similar metric side-channel vulnerability (SCV) is proposed at pre-silicon assessment

• Derived patterns are used during simulation with Synopsys VCS

• The generated SAIF files are fed to Synopsys Spyglass for power estimation

All Rights Reserved

Experimental Results

• SCV calculation

• Evaluation under both HW and HD models

• Positive correlation between SCV metric and specified HW/HD value

• R2 values indicate the great linearity between SCV and HW/HD

• AES-GF > AES-LUT in terms of PSCL -> consistent w/ previous results

• SCV validation at gate-level and post-silicon (FPGA) levels

• Pearson correlation coefficient

• Gate-level: Xilinx Vivado

• AES-GF = 0.986

• AES-LUT = 0.967

• FPGA level: Xilinx Spartan-6 with Tektronix MDO3102 oscilloscope

• Design running at 24 MHz

• AES-GF = 0.985

• AES-LUT = 0.924

All Rights Reserved

Demo Video

All Rights Reserved

CAD for Security

68

C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG)

• EM Leakage Assessment

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks

• Power Side-channel Leakage Assessment (TVLA)

All Rights Reserved

Vulnerability Analysis of FSM

Finite State Machine → controls overall functionality of most digital systems

69

Sources of Vulnerabilities

Synthesis tools introduce don’t-care states and

transitions → facilitate fault and Trojan based

attacks

Encoding scheme and design constraints →

create unintentional vulnerabilities in FSM

Attacks on FSM

Fault Injection Attack: Inject a fault to cause

transition to a protected state from an unauthorized

state

All Rights Reserved

Attacker’s objective:

Bypass the intermediate rounds and go directly to the Final Round.

Example: AES Encryption

Source: Datasheeet AES 128/192/256 (ECB) AVALON 70

All Rights Reserved

AVFSM (Analyzing Vulnerabilities in FSM)

71

AVFSM1

2 3

4
FSM

extraction

Vulnerable

State-transition

identification

Overall FSM

vulnerability

quantification

State-transition

vulnerability

quantification

All Rights Reserved

Fault Injection Vulnerability Metric

AVFSM Framework

72

• Rule: For Secure FSM 𝑉𝐹𝐹𝐼 should be zero (or

minimized)

• ASF is a measure of susceptibility to fault attack

• PVT(%) indicates percentage of total transitions

vulnerable to fault injection attack

All Rights Reserved

Impact of Encoding Schemes

Encoding Scheme 1 Encoding Scheme 2

Area: 2226.7
Area: 2038.5

Vulnerability analysis of AESTakeaway

State encodings impacts the

vulnerabilities of a FSM

73

scheme 1 scheme 2

𝑽𝑭𝑭𝑰 (0,0) (58.9%,0.15)

All Rights Reserved

Case Study

74

• Design: AES controller’s FSM

• Abstraction level: Gate-level netlist

• State Encoding:

‒ WAIT_KEY : 001

‒ WAIT_DATA : 010

‒ INITIAL_ROUND : 011

‒ DO_ROUND : 100

‒ FINAL_ROUND : 000

• Protected State: 000

Figure: Finite-state machine of AES controller

All Rights Reserved

Demo Video

75

All Rights Reserved

CAD for Security

76

C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG)

• EM Leakage Assessment

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks

• Power Side-channel Leakage Assessment (TVLA)

All Rights Reserved

High-Level Overview

77

• Tool Name: Automated Security Property mapping tool

• Goal:

‒ Mapping Security Property between design abstraction levels (C to RTL to GATE)

‒ Extension of the security properties

‒ Expansion of the security properties

All Rights Reserved

Important Terms

78

• Security Property Mapping: Translation of one abstraction level’s security property

to another.

• Security Property Extension: Extension of the argument list of a security property.

Property:

Asset should not leak to Input and output

Extended Property

Asset should not leak to Input, output, and Ready

All Rights Reserved

Important Terms (Cont.)

79

• Security Property Expansion: Additional security property created to check new

vulnerability that violates a specific security goal.

RTL

Gate

Property:

FINAL_ROUND should be accessed only from DO_ROUND

Expanded Property:

FINAL_ROUND should not be connected to any don’t care states

All Rights Reserved

Case Study

80

• Design: AES

• Abstraction level: C, RTL, Gate

• Input in C-level:

‒ C Design

‒ C properties

‒ RTL design

• Input in RTL:

‒ RTL design

‒ RTL Property

‒ Gate-level netlist.

‒ DFT structure.

• Output:

‒ Mapped, extended, and expanded properties

All Rights Reserved 81

Demo Video

All Rights Reserved

CAD for Security

82

C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG)

• EM Leakage Assessment

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks

• Power Side-channel Leakage Assessment (TVLA)

All Rights Reserved

High Level Overview

83

• Tool Name: Information Flow Security Verification Tool (IFS).

• Goal: To detect the presence of Trojans in a design using Information Flow Security

(IFS) by checking for any violation of information flow policies.

• Description:

‒ Our tool tries to leverage the violations of ‘confidentiality’ or ‘integrity’ of information

flow by a Trojan.

‒ By leveraging fault models such as stuck-at-faults and Automatic Test Pattern

Generation (ATPG) tools, we can detect malicious change that cause CI violations.

‒ The trigger condition for the Trojans can also be extracted using the IFS tool.

All Rights Reserved

Framework

84

• Input: Design Library (.v), synthesized netlist (.v) and test protocol (.spf)

• Output: Confidentiality Report, Integrity Report.

• CAD Tool Used: Synopsys TetraMax

All Rights Reserved

Demo Video

85

All Rights Reserved

Results

86

• We have performed a “confidentiality” verification on an AES-T100 Trojan

benchmark which has an always-on Trojan.

• Too detected different malicious observe points to which our asset (key[0]) leaks to.

All Rights Reserved

CAD for Security

87

C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG)

• EM Leakage Assessment

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks

• Power Side-channel Leakage Assessment (TVLA)

All Rights Reserved

Motivation

• Fault injection is a powerful attack to

tamper with the device and extract

secrets

• Current countermeasures, e.g.,

hardware/time redundancy, may involve

100% area or timing overhead

• Lack of research in assessing the

design’s vulnerability to fault-injection

attacks at an early stage (gate-level)

• No automated framework to perform

such assessment

88

K. Matsuda et al., "A 286 F2/Cell Distributed Bulk-Current Sensor and Secure Flush Code Eraser Against Laser Fault Injection
Attack on Cryptographic Processor," in IEEE Journal of Solid-State Circuits, vol. 53, no. 11, pp. 3174-3182, Nov. 2018

All Rights Reserved

SoFI Framework

• Assessment tool for ICs against fault injection attacks at gate-level

• Security property driven

• Critical locations are identified

• Considers the capability of specific fault injection technique

• Fault feasibility analysis

• Provides opportunity for local countermeasures to lower overhead

89

All Rights Reserved

SoFI Overview and Sample Output

90

All Rights Reserved

Demo on an AES Controller

91

• Example Security Property: The done signal that indicates the completion of

ten AES rounds cannot be raised in the 1st AES round.

All Rights Reserved

Demo Video

92

All Rights Reserved

CAD for Security

93

C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG)

• EM Leakage Assessment

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks

• Power Side-channel Leakage Assessment (TVLA)

All Rights Reserved

Motivation

Source: FICS Research

(Fera system)

Pre-FIB surface FIB milling to expose

adjacent interconnects

FIB deposition to short

adjacent interconnects

Focused Ion Beam (FIB)

• A powerful tool commonly used in the development,

manufacturing, and editing of ICs in nm level

precision

Probing Attack

• Get physical access to signal wires to extract

security critical information

• Front-side attack and back-side attack

All Rights Reserved

iPROBE Framework

• Automatically identifies target and

shield nets

• Groups target nets under internal

shield by constrained place and route

• Compares the shield signal and a

lower copy to detect milling

• Exposed area metric to assess the

vulnerability against probing attacks

All Rights Reserved

iPROBE Overview

• Internal Shield

• Save area, no pattern generator

• Mitigate bypass and reroute attack

• Three new steps

• Automatically identify target and

shield nets

• Integrate Comparator gates in the

new netlist

• Group target nets under internal

shield by constrained floorplan and

routing

96

All Rights Reserved

Probing Assessment: Exposed Area

• Milling-exclusion Area (MEA)

• If milling center falls in MEA, a covering wire will be

completely cut

• Exposed Area (EA)

• Complement of MEA on target wires

• Free to probe area without impacting signal transmission

• Designs with large exposed area are vulnerable to

probing

Layout view of targeted wire

White: Exposed Area -- 11%

Black: Milling-exclusion Area

All Rights Reserved

Demo on AES

All Rights Reserved

Challenges

99

All Rights Reserved

Challenges

100

Some rules can have conflicting requirement

For malicious change detection → high observability is desired

For asset leakage → high observability (of asset) is a serious threat

Designer Attacker

Now I can

observe any
malicious part

I can now

see all your
assets

Risk-cost Analysis: Invest in addressing threats that matters the most within

the given budget/risk

Blindly applying rules → unnecessary design overhead and loss of testability

All Rights Reserved

Challenges

101

Need to develop comprehensive SoC vulnerability database

Effort underway by TAME working group

Formally expressing security policies and rules

Metrics

Need to develop standards -- IEEE

Automated security validation

Done at higher levels of abstraction, i.e., C/C++ or RTL

Evaluation times need to be scalable with the design size

Outputs generated should be easily interpretable by design engineer

All Rights Reserved

Challenges

102

Usable Security:

Development of design guidelines for security → avoid some common security

problems

Do-s & Don’t-s for designers

Best security practices

Low-cost countermeasure techniques for each vulnerability

All Rights Reserved

References

103

[1] Salmani, Hassan, and Mohammed Tehranipoor. "Analyzing circuit vulnerability to hardware Trojan insertion

at the behavioral level." 2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFTS). IEEE, 2013.

[2] He, Miao., Park, J., Nahiyan, A., Vassilev, A., Jin, Y., & Tehranipoor, M. (2019). RTL-PSC: Automated Power

Side-Channel Leakage Assessment at Register-Transfer Level. IEEE VLSI Test Symposium 2019. 2019

[3] Y. Jin et al., EMLA: Metrics and Tools for Automated EM-Channel Leakage Analysis at Pre-Silicon, in

preparation

[4] Jasper. (2014). JasperGold: Security Path Verification App. [Online].

[5] Contreras, Gustavo K., et al. "Security vulnerability analysis of design-for-test exploits for asset protection

in SoCs." 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2017.

[6] Nahiyan, Adib, et al. "Hardware Trojan detection through information flow security verification." 2017 IEEE

International Test Conference (ITC). IEEE, 2017.

[7] A. Nahiyan, F. Farahmandi, D. Forte, P. Mishra and M. Tehranipoor, \Security-aware FSM Design Flow for

Mitigating Vulnerabilities to Fault Injection Attacks", IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), submitted.

[8] Nahiyan, A., Xiao, K., Yang, K., Jin, Y., Forte, D., & Tehranipoor, M. (2016, June). AVFSM: a framework for

identifying and mitigating vulnerabilities in FSMs. In Proceedings of the 53rd Annual Design Automation

Conference (p. 89). ACM.

All Rights Reserved

References

104

[9] H. Salmani, M. Tehranipoor, R. Karri, On design vulnerability analysis and trust benchmarks development,

in: Computer Design (ICCD), 2013 IEEE 31st International Conference on, IEEE, pp. 471–474.

[10] Wang, Huanyu, et al. "Probing Assessment Framework and Evaluation of Antiprobing Solutions." IEEE

Transactions on Very Large Scale Integration (VLSI) Systems (2019).

[11] F. Farahmandi and P. Mishra. Automated test generation for debugging arithmetic circuits. In 2016 Design,

Automation & Test in Europe Conference & Exhibition (DATE), pages 1351– 1356. IEEE, 2016.

[12] F. Farahmandi, Y. Huang, and P. Mishra. Trojan localization using symbolic algebra. In Design Automation

Conference (ASP-DAC), 2017 22nd Asia and South Pacific, pages 591–597. IEEE,

2017.

[13] N. Fern, I. San, C. K. Koc¸, and K.-T. T. Cheng. Hardware trojans in incompletely specified on-chip bus

systems. In Proceedings of the 2016 Conference on Design, Automation & Test in Europe, pages 527–530.

EDA Consortium, 2016.

[14] X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, and P. Mishra. Pre-silicon security verification and validation: A

formal perspective. In ACM/IEEE Design Automation Conference (DAC), 2015.

[15] J. Rajendran, V. Vedula and R. Karri. Detecting malicious modifications of data in third party intellectual

property cores. In ACM/IEEE Design Automation Conference (DAC), pages 112–118, 2015.

[16] Jonathan Cruz, Farimah Farahmandi, Alif Ahmed, and Prabhat Mishra, “Hardware Trojan Detection using

ATPG and Model Checking,” International Conference on VLSI Design (VLSI Design), pages 91-96, Pune,

India, January 6 – 10, 2018.

All Rights Reserved 105

See Trust-Hub to access benchmarks, tools,

hardware platforms, etc.

www.trust-hub.org

SoC Security

http://trust-hub.org/vulnerability-db/cad-soluti

ons

Mark Tehranipoor, tehranipoor@ece.ufl.edu

Farimah Farahmandi, farimah@ece.ufl.edu

http://www.trust-hub.org/
http://trust-hub.org/vulnerability-db/cad-solutions
mailto:tehranipoor@ece.ufl.edu
mailto:farimah@ece.ufl.edu

