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Modern SoCs – Heterogeneous Architecture

4
@Chipworks

• TSMC's 16 nm FinFET

• 3.3 billion transistors

• Die size: 125 mm2

Apple A10 Quad Core SoC
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SoC Market Size

SoC’s Growth
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High complexity of devices

Tens of billions transistors

Aggressive time-to-market 

requirements

Severely constrains functional validation → 

vulnerability escapes to silicon or in-field

High diversity in computing devices

Security requirements vary significantly

Cannot be “pre-verified” at the IP level

Connectivity

More SoCs being connected →  not originally 

designed to be connected

Design Challenges 
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Contains 3.3

Billions of transistors

Shrunk to less 

than a year → 

mobile device

Everything is 

connect to Internet 
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Design Flow
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3PIP providers

Working under aggressive schedules → design mistakes, poor IP validation

Can insert malicious implants (hardware Trojans)

CAD tools

Not equipped with understanding security vulnerabilities

Vulnerabilities during optimization, synthesis, DFT, etc.

Foundry

Access to the entire design → hardware Trojan, Counterfeit

Counterfeits →  low-quality clones, overproduced chips in untrusted foundry

Security & Trust Issues: Supply Chain

9
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Challenges 
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Aggressive time-

to-market 

Tens of IPs from

3P vendors

Tens of billions

transistors

Many 

custom/legacy 

functionality

Designed around 

the globe

Many security

critical assets

Ensuring security is a challenge
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HW Attacks

Trojans Untrusted Foundry Counterfeit ICs Physical Attack

Reverse EngineeringFault Injection AttacksSide-channel Attacks Counterfeit/Fake Parts
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Impact: HW Security Compromise
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HardwareOSApplicationUser

~1K

~100K

~10M

~1B

Social 

engineering 

(phishing)

Malwares

(information 

harvesting)

Virus/ Trojan

(Hijacking/ 

DDoS)

Hardware 

compromise

(low grade/ 

backdoor)

Relative Impact
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Intel sells off for a second day as 

massive security exploit shakes the 

stock

Jan 4, 2018

Intel Facing 32 Lawsuits Over Meltdown 

and Spectre CPU Security Flaws

The company accused of selling Apple 

and Amazon data servers 

compromised by Chinese spies is 

getting crushed — it's lost half of its 

value today

Impact of Hardware Compromise
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Consider security from very beginning

Identify what needs to be protected (assets, IPs, )

Evaluate right level of security for each asset

A door may be sufficient to protect cloths, but a safe should be 

needed to protect jewelry 

Identify potential vulnerabilities 

Need to develop a vulnerability database

Analyze if vulnerabilities exists

Need to develop CAD tools for security assessment

Develop proper countermeasures

14

Security from the 

start

Building a Secure Design

Security assessment
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Security along Design Life-cycle
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Asset: A resource of value worth protecting from an adversary

Source: Intel

Security Assets in SoCs:

On-device keys (developer/OEM)

Device configuration

Manufacturer Firmware

Application software

On-device sensitive data

Communication credentials

Random number or entropy

E-fuse, 

PUF, and more…

16

Security Assets
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On device key: Secret encryption key material 

permanently embedded on the device

Confidentiality violated if compromised

Random Number/Entropy: Cryptographic primitives rely 

on a good quality and unbiased random number generator

Weaken cryptographic algorithms if tampered

On-device sensitive data: Information about the user 

credential, meter readings, counters

Privacy violated if compromised/tampered

Chip manufacturer's code: Low level program 

instructions, proprietary firmware

17

Assets
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Security along SoC Design Life-cycle

18

CAD for Security
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Manual Security Assessment

Certification Schemes: Security verification by an independent official 3rd party

Example: payment Card Industry (PCI-DSS and PTS Finance industry)

Process overview:

Suffer from various flaws

Security review depends greatly on the experience

No proof that the design is secure against possible attack scenarios

Current Practices

19

Security claims 3P Assessment Final report
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Automation made design of modern ICs possible

Tools made design of chips optimized for different applications 

possible, i.e., optimized for power, performance, and area

Metrics played major role

Power

Performance

Area

Testability

Automation

20
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Security is a generic term

Vulnerabilities are quite diverse

No silver bullet and no one size fits 

all

Relying on SMEs is no longer 

possible

There is a lack of understanding of 

security issues by designers

Emerging vulnerabilities

How quickly one can understand 

it? Mitigate it?

Best to be automated

Focus on the known vulnerabilities

Automation

21

Untrusted Foundry

Physical AttackFault Injection Attacks

Side-channel Attacks
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Automation

No comprehensive solution to guide security 

check for SoCs

Cost of fixing vulnerabilities found at later stages 

is significantly higher – Rule of 10

Unlike software or firmware → no flexibility in 

changing or releasing post-shipment patches 

for hardware 

Identify security issues during design phase

Address them as early as possible in the design 

process

22

RTL Gate Level

Silicon Validation

Layout Level

In-field
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A comprehensive framework for analyzing known

security issues in SoCs

DSeRC framework:

reads the design files, constraints, threat model, and user 

input data

checks for vulnerabilities at all levels of abstraction (RTL, 

gate, layout, and architectural levels)

Each vulnerability is tied with a set of rules and 
metrics →  security can be quantitatively measured

Security Assessment

23
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Security Assessment

24

CAD for Security 

Assessment

Rules & Metrics

Vulnerabilities
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Security Assessment

25

CAD for Security 

Assessment

Rules & Metrics

Vulnerabilities



All Rights Reserved

Comprehensive Vulnerability Database
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Sources of Vulnerabilities

Design Issues

Unintentionally created by (i) designer’s mistakes, (ii) 

designer’s lack of understanding of security problems 

and requirements in a complex SoC.

Confidential IP core

Untrusted IP cores

RTL Design

Synthesized Design 

Synthesis tools “melt” the IP cores into one circuit –
Circuit Flattening 

27

T. Huffmire et al., Moats and Drawbridges: An Isolation Primitive for Reconfigurable Hardware Based Systems

, ieee-sp'07.

CAD Tools

Tools are designed to focus on power, performance, 

and area

Can introduce vulnerabilities during 

optimization/synthesis – leak information
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Sources of Vulnerabilities

DFT and DFD Structures

The increased controllability and observability added 

by DFT and DFD structures can create additional

vulnerabilities

28

Black and White Hats

Side channel attacks, fault injection attacks, information 
leakage, IP issues, and more 

Vulnerabilities
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Trust-Hub / TAME Vulnerability Database

29

An effort by industry and academic research leaders to provide awareness to 

researchers and practitioners of hardware security on SoC vulnerabilities

Goal:

Develop the National Hardware Vulnerability Database (NHVD) to be shared with the 

potential of being used as a standard approach for enumerating and screening of various 

dimensions of security risks for SoCs
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Trust-Hub Vulnerability Database

30
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Security Assessment

31

CAD for Security 

Assessment

Rules & Metrics

Vulnerabilities
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Abstraction Levels

32

IP Level: Vulnerabilities 

considered in modular basis at 

RTL, gate, and physical layout 

levels

SoC Level: Vulnerabilities 

considered from system (e.g., 

SoC) level perspective –

interaction between different 

cores
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Vulnerabilities and Rules

Vulnerability: Asset leakage

Rule: An asset should never propagate to any location where an attacker can observe it

asset secure area

secure 

area

33

SoC

Source: Jasper
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More Examples of Rules

uP in user mode should never access

OS kernel memory

During crypto operation reset, reading 

intermediate results, changing keys, 

and data operations are prohibited

During cryptographic asset (e.g. key) 

transfer from the system memory to the 

crypto-core registers, all other IP 

accesses to the bus are disabled

34

The power management module can enable a modification in the clock 

frequencies only when the core is not in active mode

During debug, no accesses are allowed to the security critical part of memory

Source: Jasper
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Vulnerability Metric Rule Attack (Attacker)

RTL

Level

Dangerous Don't Cares
Identify all 'X' assignments and check if 'X' 

can propagate to observable outputs

'X' assignments should not be propagated to 

observable output
Hardware Trojan (Insider)

Hard-to-control & hard-to-observe 

Signals

Statement hardness and signal 

observability

Statement hardness (signal observbility) should 

be lower (higher) than a predefined threshold
Hardware Trojan (Insider)

Asset leakage Structure checking and IFT
Security sensitive assets should not be exposed 

to observable points
Asset hacking (End user)

….

Gate

Level

Hard-to-Control & hard-to-

observe Nets
Net controllability and observability

Controllability and observability should be 

higher than a threshold value
Hardware Trojan (Insider)

Vulnerable FSM
Vulnerability factor of fault injection (𝑽𝑭𝑭𝑰) 
and Trojan insertion  (𝑽𝑭𝑻𝒓𝒐) 

𝑽𝑭𝑭𝑰 and 𝑽𝑭𝑻𝒓𝒐 should be zero
Fault injection, Hardware 

Trojan (Insider, end user)

Asset Leakage Confidentiality and integrity assessment
Assets should not be leaked through observable 

points
Asset hacking (End user)

Design-for-Test (DFT),

JTAG/IJTAG Vulnerabilities 
Confidentiality and integrity assessment

Assets should not be leaked or accessed 

through DFT structure
Asset hacking (End user)

Design-for-Debug structure 

Vulnerabilities
Confidentiality and integrity assessment

Assets should not be leaked or accessed 

through DFD structure
Asset hacking (End user)

…..

Layout 

Level

Side-Channel Leakage Side-channel vulnerability (SCV) SVF should be lower than a threshold value
Side-channel attack (End 

user)

Microprobing Vulnerability

Exposed area of the security-critical nets 

which are vulnerable to microprobing

attack

The exposed area should be lower than a 

threshold value

Micro-probing attack 

(Professional attacker)

Trojan Insertion – unused space Unused space analysis
Unused space  should be lower than a threshold 

value
Untrusted foundry

…..

Vulnerabilities, Metrics and Rules

35
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Security Assessment

36

CAD for Security 

Assessment

Rules & Metrics

Vulnerabilities
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Trust-Hub CAD for Security

37
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CAD for Security 
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C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG) 

• EM Leakage Assessment 

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks 

• Power Side-channel Leakage Assessment (TVLA)
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CAD for Security 
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C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG) 

• EM Leakage Assessment 

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks 

• Power Side-channel Leakage Assessment (TVLA)
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HLS Overview

• High-Level Synthesis (HLS) translates high-level C/C++ 

code to HDL-level VHDL/Verilog. Advantages:

• reduced time-to-market

• easier implantation of complex RTL designing 

• suitable for Crypto modules, Machine Leaning, and AI

• However, due to prioritizing performance, the security 

aspects are overlooked in specific scenarios

• This tool explores some of the security vulnerabilities 

introduced by HLS

Constraints

Specifications

Library

Compilation

Intermediate 

Representation

Selection Allocation

Binding Scheduling

FSM extraction & 

RTL generation

High-Level Synthesis steps 
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Throughput 

Optimizations

Latency 

Optimizations

Area 

Optimizations

Power 

Optimizations

• Efficient Pipeline.

• Reducing initiation interval.

• Parallel scheduling.

• Generate combinational logic.

• Optimize multicycle algorithmic 

trees.

• Use registers without reset or 

preset.

• Share hardware resources..

• Scheduling operations to 

reduce switching activity.

• Improper scheduling.

• Shared hardware resources between secret 

and non-secret asset.

• Unsynced pipeline between secret and non-

secret asset.

• Flattening/In-lining of functions.

• Insecure control FSMs.

• Presence of redundant logic.

• Registers with no resets.

• Registers with no preset.

• Passthrough primary outputs.

• Insecure IO call methods.

HLS-related Potential Hardware Vulnerabilities
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Workflow

HLS Compiler 

(Vivado/Catapult)

C/C++

VHDL/ 

Verilog

Input Design

Output

Sequential

Flexible
(parallel, sequential,

partial unroll)

Optimizations

Constraints
(Clock, Latency, 

Mem. Archi.)

Library

(area, timing)

Creating Test 

Cases

Identifying 

Vulnerabilities

• The first step is to use benchmark designs (C/C++) as

input to HLS compiler

• The compiler outputs the HDL form of the design

• This HDL is simulated with suitable test conditions

• Assessing if any kind of security vulnerability can be

found

• Common vulnerabilities: confidentiality and integrity
violations (e.g., information leakage, and inadequate
access control )

Use suitable 

testbenches
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HLS Vulnerability Detection

Demo
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Demo Video
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CAD for Security 
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C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG) 

• EM Leakage Assessment 

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks 

• Power Side-channel Leakage Assessment (TVLA)
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Susceptibility to Trojan Insertion 

46

Sections in a circuit with low controllability and 

observability are considered potential areas for implementing 

Trojans

Metrics:

Statement hardness: Difficulty of executing a statement

Observability: Difficulty of observing a signal

Rule 1: Statement hardness of each statement should be 

lower than a predefined threshold

Rule 2: Observability of each observable signal should be 

higher than a predefined threshold

High Statement 
Hardness

Low Observable 
Point
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Susceptibility to Trojan Insertion  

47

Application of the Tool: 

Can be used to determine which parts of a circuit are more susceptible to Trojan insertion

Can be used to track and identify malicious part included in the code by a rogue 

employee (insider threat)

Statement weight analysis. Statement hardness for b05.
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CAD for Security 
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C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG) 

• EM Leakage Assessment 

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks 

• Power Side-channel Leakage Assessment (TVLA)
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Motivation

• Goal: Given a RTL design, we need to generate test for covering all suspicious targets

49

func (a) {

if (a == 5)

activate Trojan

else

normal operation

}

• Small program – Doable

• Large program – Hard

• RTL designs - Harder (complex designs, concurrency, multiple clock domain etc.)

• Trojans - Even harder (Occurs only on extremely rare scenarios)

Manual Test Writing

Target
We want to generate 

test case to cover 

target

Trigger

Start
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Test Generation for Hardware Trojan Detection

• Problem:

• Threat: Hardware Trojan inserted in a RTL design that leaks an asset to the outside world.

• Finding Test patterns that trigger the Trojan.

• Rareness of certain regions of code is our metric to find candidates.

• The WhiteBox vs BlackBox.

• Tradeoff between scalability and coverage.

50

Random Pattern Generation Formal methods

Symbolic ExecutionKLEE Concolic testing 
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Test Generation Steps

• Formal methods are not scalable and random test generation does not provide good 

coverage → Symbolic Execution.

• Steps in obtaining the trigger patterns:

• Step 1: Instrumentation of the RTL code and Translating it to C level

• Step 2: Random simulation for sufficient cycles to identify rare branches.

• Step 3: Translating the rare branches to KLEE assertions.

• Step 3: Symbolic execution with Cone of influence analysis to cover the assertions.

• Step 4: Test pool of all the test patterns that are candidates for Trojan trigger.
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Test Generation for Hardware Trojan Detection

• Symbolic execution generates the test patterns by using a SMT solver at its core.

• The Platform was tested on AES trojan inserted designs. 

52
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Test Generation Demo
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Demo Video
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CAD for Security 
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C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG)

• EM Leakage Assessment 

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks 

• Power Side-channel Leakage Assessment (TVLA)
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Objective and Motivations

• Side-channel attacks have been a major concern to security community

• Side-channel countermeasures and leakage assessment have been studied

• However, they mostly focus on post-silicon side-channel assessment

• Difficult to find the leakage sources or modules

• Too expensive in modifying designs to address leakage issues

• Two proposed frameworks PSC-Sim/TG to fulfill side-channel assessment at RTL

• Leakage evaluation at the earliest phase allows more flexibility

• Technology independent analysis

• CAD tools for flow automation
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Overview: PSC-Sim

KL Divergence Metric

• For any two given secret keys, metric helps to 

visualize by how much the power distribution 

functions (PDFs) associated with the keys differ.

• Larger the distance, higher probability of an 

attacker guessing the key correctly in fewer 

number traces by performing differential power 

analysis.

• Exhaustive testing for all the key-pairs at 

design-level is time consuming, hence key pairs 

are intelligently selected.

• Exhaustive testing at modular-level is done to 

test for all possible secret inputs to the block. It 

also helps to replicate the scenario where 

intrinsic noise from other modules hide the 

vulnerable block which attacker may exploit after 

pre-processing of power traces post-silicon.
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Identifying Power Leakage

• Total power KL Divergence between key pairs 

all 0’s and all F’s.

• KL divergence of more than 0.03 shows that 

there is more than 90% probability of attacker 

able to distinguish between key pairs by side 

channel analysis.
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Identification of Vulnerable Module

• It can be seen that framework is able to identify the Sbox and mix column modules as leaky.

AES-GF Design: Vulnerable module 

identification

AES-LUT Design: Vulnerable module 

identification

Worst-case Key Pair

Key0: 0x0000_0000_0000_0000

Key2: 0xFFFF_FFFF_FFFF_FFFF
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PSC Improvement at Module-Level

• Unprotected LUT-Sbox Module is 

replaced with threshold 

implementation of Sbox.

• Top-Left: Power distribution 

functions for different subkeys in the 

normal AES Sbox Module.

• Top-Right: Power distribution 

functions for different subkeys in the 

Sbox with TI implementation.

• Bottom-Left: KL divergence between 

every possible subkey pair for 

unprotected Sbox. 

• Bottom-Right: KL divergence 

between every possible subkey pair 

for Sbox-TI.

White spaces reflect the KL divergence for the particular keypair is less than 0.3
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PSC Improvement at Design-level

• The unprotected Sbox is replaced 
with Sbox-TI.

• The generation of random bytes in 
the design also lead to additional 
switching. Thus, reducing SNR.

• Figure shows the total power KL 
divergence between key pairs all 0’s 
vs all F’s.

• Since KL divergence is less than 
0.03 it can be fairly assumed that it 
will challenging for an attacker to 
distinguish between the key pairs.
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Overview: PSC-TG

• PSC-TG framework

• Goal: Deriving few patterns to cause worst-case scenario in terms of PSCL for the target 

design and calculate metrics for PSCL assessment

• Overview

• Target properties definition

• RTL information flow tracking

• Pattern generation

• Metrics calculation for non-masked implementations -> SCV metric
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Target Variable Identification

• Target variables identification

• Aim: identify the variables which satisfy all four properties

• Method: RTL IFT with Jaspergold SPV

• Starting from key bits -> check tainted variables cycle-by-cycle -> potential target variables

• If other 3 properties are also satisfied -> target variables
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Pattern Generation

• Pattern generation

• Aim: derive the patterns which can cause worst-case scenario

• Method: Formal verification with Jaspergold FPV

• HW model: HW(TVs) at Nth round != specified value

• HD model: HD(TVs) at Nth and (N-1)th round != specified value

• Derived patterns will be reported in the counterexample
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SCV Metric Calculation

• SCV metric calculation for non-masked design

• Signal-noise-ratio (SNR) is popular at post-silicon assessment

• Similar metric side-channel vulnerability (SCV) is proposed at pre-silicon assessment

• Derived patterns are used during simulation with Synopsys VCS

• The generated SAIF files are fed to Synopsys Spyglass for power estimation
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Experimental Results

• SCV calculation

• Evaluation under both HW and HD models

• Positive correlation between SCV metric and specified HW/HD value

• R2 values indicate the great linearity between SCV and HW/HD

• AES-GF > AES-LUT in terms of PSCL -> consistent w/ previous results

• SCV validation at gate-level and post-silicon (FPGA) levels

• Pearson correlation coefficient 

• Gate-level: Xilinx Vivado

• AES-GF = 0.986

• AES-LUT = 0.967

• FPGA level: Xilinx Spartan-6 with Tektronix MDO3102 oscilloscope

• Design running at 24 MHz 

• AES-GF = 0.985

• AES-LUT = 0.924
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Demo Video
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CAD for Security 
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C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG) 

• EM Leakage Assessment 

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks 

• Power Side-channel Leakage Assessment (TVLA)
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Vulnerability Analysis of FSM

Finite State Machine → controls overall functionality of most digital systems

69

Sources of Vulnerabilities

Synthesis tools introduce don’t-care states and 

transitions → facilitate fault and Trojan based 

attacks

Encoding scheme and design constraints →

create unintentional vulnerabilities in FSM

Attacks on FSM

Fault Injection Attack: Inject a fault to cause 

transition to a protected state from an unauthorized 

state
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Attacker’s objective: 

Bypass the intermediate rounds and go directly to the Final Round.

Example: AES Encryption

Source: Datasheeet AES 128/192/256 (ECB) AVALON 70
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AVFSM (Analyzing Vulnerabilities in FSM)

71

AVFSM1

2 3

4
FSM 

extraction

Vulnerable

State-transition

identification

Overall FSM 

vulnerability

quantification

State-transition

vulnerability

quantification
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Fault Injection Vulnerability Metric

AVFSM Framework

72

• Rule: For Secure FSM 𝑉𝐹𝐹𝐼 should be zero (or 

minimized)

• ASF is a measure of susceptibility to fault attack

• PVT(%) indicates percentage of total transitions 

vulnerable to fault injection attack
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Impact of Encoding Schemes

Encoding Scheme 1 Encoding Scheme 2

Area: 2226.7
Area: 2038.5

Vulnerability analysis of AESTakeaway

State encodings impacts the 

vulnerabilities of a FSM

73

scheme 1 scheme 2

𝑽𝑭𝑭𝑰 (0,0) (58.9%,0.15)
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Case Study

74

• Design: AES controller’s FSM

• Abstraction level: Gate-level netlist

• State Encoding:

‒ WAIT_KEY   : 001

‒ WAIT_DATA  : 010

‒ INITIAL_ROUND : 011

‒ DO_ROUND   : 100

‒ FINAL_ROUND : 000

• Protected State: 000

Figure: Finite-state machine of AES controller
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Demo Video
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CAD for Security 
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C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG) 

• EM Leakage Assessment 

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks 

• Power Side-channel Leakage Assessment (TVLA)
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High-Level Overview
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• Tool Name: Automated Security Property mapping tool

• Goal: 

‒ Mapping Security Property between design abstraction levels (C to RTL to GATE)

‒ Extension of the security properties

‒ Expansion of the security properties 
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Important Terms
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• Security Property Mapping: Translation of one abstraction level’s security property 

to another.

• Security Property Extension: Extension of the argument list of a security property.  

Property:

Asset should not leak to Input and output

Extended Property

Asset should not leak to Input, output, and Ready
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Important Terms (Cont.)
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• Security Property Expansion: Additional security property created to check new 

vulnerability that violates a specific security goal.

RTL

Gate

Property:

FINAL_ROUND should be accessed only from DO_ROUND

Expanded Property:

FINAL_ROUND should not be connected to any don’t care states
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Case Study
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• Design: AES

• Abstraction level: C, RTL, Gate

• Input in C-level:

‒ C Design

‒ C properties

‒ RTL design

• Input in RTL:

‒ RTL design

‒ RTL Property

‒ Gate-level netlist.

‒ DFT structure.

• Output:

‒ Mapped, extended, and expanded properties
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Demo Video
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CAD for Security 
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C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG) 

• EM Leakage Assessment 

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks 

• Power Side-channel Leakage Assessment (TVLA)
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High Level Overview

83

• Tool Name: Information Flow Security Verification Tool (IFS).

• Goal: To detect the presence of Trojans in a design using Information Flow Security 

(IFS) by checking for any violation of information flow policies.

• Description:

‒ Our tool tries to leverage the violations of ‘confidentiality’ or ‘integrity’ of information 

flow by a Trojan.

‒ By leveraging fault models such as stuck-at-faults and Automatic Test Pattern 

Generation (ATPG) tools, we can detect malicious change that cause CI violations.

‒ The trigger condition for the Trojans can also be extracted using the IFS tool.
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Framework
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• Input: Design Library (.v), synthesized netlist (.v) and test protocol (.spf)

• Output: Confidentiality Report, Integrity Report.

• CAD Tool Used: Synopsys TetraMax
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Demo Video
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Results
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• We have performed a “confidentiality” verification on an AES-T100 Trojan 

benchmark which has an always-on Trojan.

• Too detected different malicious observe points to which our asset (key[0]) leaks to.
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CAD for Security 
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C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG) 

• EM Leakage Assessment 

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks 

• Power Side-channel Leakage Assessment (TVLA)
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Motivation

• Fault injection is a powerful attack to 

tamper with the device and extract 

secrets

• Current countermeasures, e.g., 

hardware/time redundancy, may involve 

100% area or timing overhead

• Lack of research in assessing the 

design’s vulnerability to fault-injection 

attacks at an early stage (gate-level)

• No automated framework to perform 

such assessment

88

K. Matsuda et al., "A 286 F2/Cell Distributed Bulk-Current Sensor and Secure Flush Code Eraser Against Laser Fault Injection 
Attack on Cryptographic Processor," in IEEE Journal of Solid-State Circuits, vol. 53, no. 11, pp. 3174-3182, Nov. 2018
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SoFI Framework

• Assessment tool for ICs against fault injection attacks at gate-level

• Security property driven

• Critical locations are identified

• Considers the capability of specific fault injection technique

• Fault feasibility analysis

• Provides opportunity for local countermeasures to lower overhead

89
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SoFI Overview and Sample Output
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Demo on an AES Controller
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• Example Security Property: The done signal that indicates the completion of 

ten AES rounds cannot be raised in the 1st AES round.
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Demo Video

92
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CAD for Security 
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C/C++

• Information Leakage

• Control flow violations

• Side channel leakage

RTL

• Susceptibility to Trojan Insertion

• Test Generation for Trust Verification

• Power Side-channel Leakage Assessment (RTL-PSC)

• PSC Test Generation (TG) 

• EM Leakage Assessment 

• Formal Verification of Security Properties

Gate

• Susceptibility of Fault Injection (AVFSM)

• Automated Mapping of Security Properties from C to Gate Level (AutoMap)

• Information Flow Security (IFS)

• Power Side-channel Leakage Assessment (SCRIPT)

• Fault Injection Assessment

Layout • Susceptibility of Probing Attacks

• Power Side-channel Leakage Assessment (TVLA)
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Motivation

Source: FICS Research 

(Fera system)

Pre-FIB surface FIB milling to expose 

adjacent interconnects

FIB deposition to short 

adjacent interconnects

Focused Ion Beam (FIB)

• A powerful tool commonly used in the development, 

manufacturing, and editing of ICs in nm level 

precision

Probing Attack

• Get physical access to signal wires to extract 

security critical information 

• Front-side attack and back-side attack
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iPROBE Framework

• Automatically identifies target and 

shield nets

• Groups target nets under internal 

shield by constrained place and route 

• Compares the shield signal and a 

lower copy to detect milling

• Exposed area metric to assess the 

vulnerability against probing attacks 
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iPROBE Overview 

• Internal Shield 

• Save area, no pattern generator

• Mitigate bypass and reroute attack

• Three new steps

• Automatically identify target and 

shield nets

• Integrate Comparator gates in the 

new netlist

• Group target nets under internal 

shield by constrained floorplan and 

routing 

96
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Probing Assessment: Exposed Area

• Milling-exclusion Area (MEA)

• If milling center falls in MEA, a covering wire will be 

completely cut

• Exposed Area (EA)

• Complement of MEA on target wires

• Free to probe area without impacting signal transmission

• Designs with large exposed area are vulnerable to 

probing

Layout view of targeted wire

White: Exposed Area -- 11%

Black: Milling-exclusion Area
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Demo on AES
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Challenges

99
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Challenges
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Some rules can have conflicting requirement 

For malicious change detection → high observability is desired

For asset leakage → high observability (of asset) is a serious threat

Designer Attacker

Now I can 

observe any
malicious part

I can now

see all your
assets

Risk-cost Analysis: Invest in addressing threats that matters the most within 

the given budget/risk

Blindly applying rules → unnecessary design overhead and loss of testability
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Challenges

101

Need to develop comprehensive SoC vulnerability database

Effort underway by TAME working group

Formally expressing security policies and rules

Metrics

Need to develop standards -- IEEE

Automated security validation

Done at higher levels of abstraction, i.e., C/C++ or RTL

Evaluation times need to be scalable with the design size

Outputs generated should be easily interpretable by design engineer
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Challenges
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Usable Security: 

Development of design guidelines for security → avoid some common security 

problems 

Do-s & Don’t-s for designers

Best security practices

Low-cost countermeasure techniques for each vulnerability
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See Trust-Hub to access benchmarks, tools, 

hardware platforms, etc. 

www.trust-hub.org

SoC Security

http://trust-hub.org/vulnerability-db/cad-soluti

ons

Mark Tehranipoor, tehranipoor@ece.ufl.edu

Farimah Farahmandi, farimah@ece.ufl.edu

http://www.trust-hub.org/
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