EEL 4712: Digital Design
Instructor: Dr. Farimah Farahmandi

Midterm 1 -10/2/2019
Time: 55 Minutes

[\VF= T 1 [RRPTRR
UFI D e ee e ae e e e

Please be neat and write (or draw) carefully. If we cannot read it with a

reasonable effort, it is assumed wrong.

As always, the best answer gets the most points.

By taking this exam, you agree to follow all rules specified below or face

receiving a 0% for this exam. We will be implementing a Zero-Strike policy.

¢ No electronic devices or printed materials allowed

e Communication between students is NOT ALLOWED

e Under no circumstances will you share the questions from this test until after
the solutions are formally released by the instructor

Re-Grade Information:

Problem Points Score

1 10
2 10
3 15
4 15
5 15
6 20
7 15

Total 100

ENTITY __entity_name IS
PORT(__input_name, __input_name

__input_vector_name
__bidir_name, __ bidir_name
__output_name, __output_name

END __entity name;

ARCHITECTURE a OF __entity name IS
SIGNAL __signal_name : STD_LOGIC;
SIGNAL __signal_name : STD_LOGIC;

BEGIN

END a;

Process Statement

Concurrent Signal Assignment
Conditional Signal Assignment
Selected Signal Assignment
Component Instantiation Statement

SIGNAL __signal_name : __type_name;
__instance_name: __component_name GENERIC MAP (__component_par =>__connect_par)
PORT MAP (__component_port => __ connect_port,

WITH __expression SELECT

__signal <= __expression WHEN __constant_value,

IN STD_LOGIC;

IN STD_LOGIC_VECTOR(__high downto __low);
:INOUT =~ STD_LOGIC;

OuT STD_LOGIC);

__component_port =>__connect_port);

__expression WHEN __constant_value, SELECT assignment statement

__expression WHEN ___constant_value,
__expression WHEN __ constant_value;

__signal <= __expression WHEN __boolean_expression ELSE Conditional assignment statement

__expression WHEN __boolean_expression ELSE

__expression;

IF __expression THEN
__statement;
__statement;

ELSIF __expression THEN
__statement;
__statement;

ELSE

__statement;
__statement;
END IF;

WAIT UNTIL __expression;

CASE __expression IS
WHEN __ constant_value =>

___statement;
__statement;

WHEN __ constant_value =>

__statement;
__statement;

WHEN OTHERS =>

__statement;
___statement;

END CASE;

<optional_label>:
FOR <loop_id> IN <range> LOOP
-- Sequential Statement(s)
END LOOP;

<generate_label>:
FOR <loop_id> IN <range> GENERATE
-- Concurrent Statement(s)
END GENERATE;

1) (10 points) Fill in the waveform for the signals “result_add” and “result sub” in decimal values

entity ALU is

port (
clk, rst : in std logic;
inputl : in std logic_vector (7 downto 0);
input2 : in std logic_vector (7 downto 0);

result add, result sub : out std logic_vector (7 downto 0);
overflow add : out std logic
) ;
end ALU;

architecture BHV of ALU is
signal temp Add: std logic_vector (8 downto O0);

begin
process (clk, rst)
variable temp sub: std_logic_vector(8 downto 0);
begin
if(rst = ‘1’) then
result add <= “00000000";
result sub <= “00000000";
overflow add <= ‘0’;
elsif (clk='1l’" and clk’event) then
temp Add <= std logic_vector (unsigned("O" & inputl) +
unsigned ("0" & input2));
temp sub:= std logic vector (unsigned("0" & inputl) -
unsigned ("0" & input2));
result add <= temp Add(7 downto 0);
result sub <= temp sub (7 downto 0);
overflow add <= temp Add(8);

end if;
end process;
end BHV;
Inputl A~
| 150 /20 | 81 [30 | 110 |
Input2
| 100 \57 | 48 | 20 | 40 |

Result add

N T—
| X | X \\\250 %1 (overflow) [129 | 50

Result sub

| X | 50 Y143 | 33 | 10 | 70

b) Explain the behavior of “result_add’s” value, mentioning when signals get updated.
Signals are updated at the end of process, variables are updated immediately.

Since temp_Add is defined as a signal, we need two cycles to see the correct value of
Result_add.

2) (10 points) Identify violations (if any) of the synthesis guidelines for synthesizable logic and
the effect on the synthesized circuit.

entity test is

port(
input : in std_logic_vector (3 downto 0);
clk, rst : in std_logic;
output : out std_logic_vector (3 downto 0));

end test;

architecture BHV of test is

begin
process (clk, rst)
begin -
if (rst = ‘1’) then Wait/time is not
output <= “0000”; synthesizable!
elsif (clk’event and clk = '1’) then
[§££§§3}= std logic_vector (unsigned (input)+ 1) (after 10ns;
end if;

end process;

process (input)
begin

—<= std logic vector (unsigned (input) + 5);
end process;

end RHV;
Output is derived in

>~ multiple processes

- Multiple drivers
for a signal

3) (15 points) A 16x1 multiplexer is provided as reference. Fill in the
code for designing this module using structural descriptions of 4x1
multiplexers and generate statement.

entity mux4tol is

port (w0, wl, w2, w3: in std logic;
s : in std logic_vector (1l downto 0) ;
f : out std logic) ;

end mux4tol;

architecture BHV of mux4tol is
begin

with s select

f <= w0 when "00",

wl when "01",

w2 when "10",

w3 when others;

end BHV;

entity muxl6tol is

port (w : in std_logic_vector(O downto 15);
s : in std_logic_vector(3 downto 0);

f : out std logic);

end muxlo6tol;

architecture STR of muxl6tol is
component mux4tol
port (w0, wl, w2, w3: in std logic;
s : in std logic vector(l downto 0);
f : out std logic);
end component;

signal m: std_logic_vector (3 downto 0);

begin

--code to be inserted

MuxGEN: for i in 0 to 3 generate

Muxes: mux4tol port map
(WO=>w (4*1), wl=>w(4*i+l), w2=>w(4*1i+2),
s=>s (1 DOWNTO 0), f=>m(i)) ;

END GENERATE ;

-—code to be inserted

Mux last: mux4tol port map
(wO=>m(0), wl=>m(l), w2=>m(2), w3=>m(3),
f=>f)

end STR;

]

A A

I‘;i 1

s —

w3=>w (4*i+3),

s=>s (3 DOWNTO 2),

4) (8 points) (a) Define each carry bit of a 4-bit carry lookahead adder (c(1), c(2), c(3), c(4)) in
terms of the propagate and generate functions, and carry in(c(0)).

c(1) = g0 + p0 c(0)

¢(2) =gl + plc(l) = gl+plg0+plp0c(0)

c(3) =92 + p2 c(2) = g2+p2 gl+p2 plg0+p2plp0c(0)

c(4) = g3+p3 c(3) = g3+p3g2+p3p2g91+p3p2p1g0+p3p2p1p0c(0)

(b) (2 points) Circle the Delay vs width graph that seems appropriate for carry lookahead adder
(CLA):

Delay

N
v

Width

(c) (2 points) Circle the Area (# of gates) vs width graph that seems appropriate for carry
lookahead adder (CLA):

Area (# of gates)

Width

(d) (3 points) True/false. A hierarchical carry-lookahead adder reduces area overhead compared to a
single-level carry-lookahead adder without increasing propagation delay. False

5) (15 points) Fill in the following behavioral VHDL to implement
the illustrated circuit. Assume that clk and rst connect to every
register. All wires and operations are width bits. Ignore overflow

from the adders.
library ieee;
use ieee.std logic 1164.all;

use ieee.numeric_std.all;

entity testl is

generic (width : positive := 8);
port (
clk, rst, mux sel : in std logic;

mux_out

inl, in2, in3, in 4 : in std_logic_vector (width-1 downto 0);

outl: out std_logic_vector(width—l_downto 0));

end testl;

architecture BHV of testl is

signal reg in2,reg in3, reg in4, addl,

std logic_vector (width-1 downto 0);

begin

process (clk, rst)

begin

if (rst = '1l') then
reg in2 <= (others =>'0'");
reg in3 <= (others =>'0'");

reg in4 <= (others =>’

reg add <= (others =

outl <= (others =>'0');
elsif (rising edge (clk))

reg in2 <= in2;
reg in3 <= 1in3;
reg in4 <= iné4;

reg_in4

reg_add
. Teg_
mux_sel

reg_add, mux out:

reg add <= std_logic_vector(unsigned(regiin3)+unsigned(regiin4));

if mux sel = ‘0’ then
outl <= addl;
else
outl <= reg add;
end if;
end if;

end process;

addl <= std logic vector (unsigned(inl)
add2 <= std logic vector (unsigned (addl)

end BHV;

+ unsigned(reg in2));
+ unsigned(reg in3));

6) (20 points) Given the following entity definition for a generic adder, Modify the testbench on
the next page to:

(a) To test the “adder” entity as a 32-bit adder.

(b) Make the testbench code general; i.e., can be used to test for any number of bits by changing
only the value of NBITS.

You need to make all necessary changes to make it work with the generic adder from the
previous page (put changes right on the next page)

entity adder is

generic (WIDTH : positive := 8);
port map (inputl, input2 : in std logic_ vector (WIDTH-1 downto O0);
carry in : in std_logic;

sum: out std logic_vector (WIDTH-1 downto O0);
carry out: out std_logic);
end adder;

library ieee;
use iecee.std logic 1164.all;
use ieee.numeric std.all;

entity adder tb is
end adder tb;

architecture TB of adder tb is

constant NBITS

signal inputl, input2, sum

signal carry in,
begin

uuT

-- TB

entity work.adder

port map (
inputl =>
input?2 =>
carry in =>
sum =>

carry out =>

process

begin

carry out

positive: 1632;

std_logic_vector(
std_logic;

A—inputl,

B

c
b
B

input2,
carry jf,
sumh/’
cgriy_out);

function definitions here

for i in 0 to +5 2**NBITS-1 loop

for j in 0 to 45 2**NBITS-1 loop

for k in 0 to
inputl
input?
carry in <=
wait for 40

assert (sum =

ns;

sum_test (i, Jj, k))

assert (carry out

end loop; -- k
end loop; -—- J

end loop; -—- 1

1 loop

std_logic(to_unsigned (k,

= carry test (i, 3],

report "SIMULATION FINISHED!";

wait;

end process;

end TB;

3NBITS-1 downto 0);

std _logic_vector (to_unsigned(i, 4 NBITS))

std _logic_vector (to_unsigned(j, 4 NBITS))

1) (0)):

report "Sum incorrect";

k))

function X carry test (
constant a, b, c:
integer)
return std_logic is
begin
if @+b + ¢ >15) then
return '1';
else return '0’;
end if;
end X carry test;

function Y (
constant a, b, c:
integer)
return std_logic is
begin
return
std_logic_vector(to_unsign
ed(
(at+b-c) mod
16, 4));
endY;

function Z sum_test (
constant a, b, c:
integer)
return std_logic_vector
is
begin
return
std_logic_vector(to_unsign
ed(
(a+b+c) mod
16-2**NBITS, 4- NBITS));
end Z-sum_test;

report "Carry incorrect";

7) (15 points) Fill in the skeleton code to implement the following Moore finite state machine,
using the 2-process FSM model. Assume that if an edge does not have a corresponding condition,
that edges always taken on a rising clock edge. Assume that INIT is the start state. Use the next
page if extra room is needed.

library ieee;

use ieee.std logic_1164.all;
entity fsm is

port (

clk, rst, go, Done : in std logic;
X : out std logic vector(l downto 0));
end fsm;

DONE
X:ll 10)’

Done=0
architecture PROC2 of fsm is

type STATE TYPE is (INIT, COUNT1, COUNT2, DONE, GO);
signal state, next state : STATE TYPE;

begin
process (clk, rst)
begin
if (rst = '1') then

Stata <= INIT;
elsif (clk'event and clk = '1l') then

State <= next state;
end if;
end process;

process (go, done, state)
begin
next state <= state;
X<="00";
Case state is
When INIT =>
Next state <= COUNTI1;
X <= “00”;
When COUNT1 =>
If go = ‘1’ then
Next state <= COUNTZ;
End if;
X <= “00”";
When COUNT2 =>
Next state <= DONE;
X <= “01”";
When DONE =>
If done = ‘1’ then
Next state <= GO;
End if;
X <= “10";

When GO =>

If done = ‘0’ and go = ‘0’ then
Next state <= COUNTI;
End if;
X <= “117;
When others => null;

End case;

end process;
end PROC2;

