
Lab 2: Generic-Width Behavioral ALU
EEL 4712 – Fall 2019

Objective:
The objective of this lab is to create a generic-width ALU using behavioral VHDL. When mapped to

the board, the ALU will use 4-bit inputs and output, with the output mapped to one 7-segment LED. The
data inputs to the ALU are connected to four switches, and the 4-bit select input is connected to 1 switch
and 3 buttons. In this lab, you will become familiar with two arithmetic VHDL packages: numeric_std
(recommended) and std_logic_arith. In addition, you will get experience using testbenches to verify the
correct functionality of the circuits you specify in VHDL.

Required tools and parts:
Quartus software package, ModelSim-Altera Starter Edition, DE10-lite board.

Pre-requisite:
You must be “up-to-speed” with Quartus before coming to lab. Perform Tutorials 1 and 3

(Appendices B and D) in the textbook if necessary. Also, download and read the DE10-lite documents
before coming to lab. You should know how to map the I/O of the top-level VHDL entity onto the
corresponding pins on the DE10 board.

Pre-lab requirements:
1. Design a decoder for the 7-segment display (call it decoder7seg.vhd). The entity must look exactly

like this:
entity decoder7seg is

port (
input : in std_logic_vector(3 downto 0);
output : out std_logic_vector(6 downto 0));

end decoder7seg;

Any changes to this entity will cause the test benches used for grading to fail. Create the VHDL
architecture to implement the following functionality. Note that the outputs for the LED segments are
active low (i.e. a 0 causes the segment to turn on).

Figure 1. Voltage Table and diagram for the 7 Segment Display

Lab 2: Generic-Width Behavioral ALU
EEL 4712 – Fall 2019

Create a VHDL testbench entity (decoder7seg_tb) for the 7-segment decoder. Save the entity in
decoder7seg_tb.vhd. It is up to you to determine the thoroughness of the testbench. It should test
enough cases so you are positive that the architecture is correct. Test your VHDL with the testbench
using ModelSim-Altera Starter Edition. See the tutorial linked off the lab website for an explanation on
how to use the tool.

2. Create a generic-width ALU using a behavioral architecture with the numeric_std package. The entity
and architecture must appear in a file called alu_ns.vhd and should have this exact specification:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity alu_ns is

generic (
WIDTH : positive := 16

);
port (

input1 : in std_logic_vector(WIDTH-1 downto 0);
input2 : in std_logic_vector(WIDTH-1 downto 0);
sel : in std_logic_vector(3 downto 0);
output : out std_logic_vector(WIDTH-1 downto 0);
overflow : out std_logic

);
end alu_ns;

Note that the width of the ALU is defined by a generic. Therefore, you must write the architecture
to work for any possible width (i.e., don’t assume the input is 16 bits). The operation of the ALU
is described below:

Sel Output Overflow (assume all operations are unsigned)

0000 input1 + input2
‘1’ if input1 + input2 is bigger than the

maximum number that can be written to
output, ‘0’ otherwise

0001 input1 - input2 ‘0’

0010

input1*input2 (low half of the
mult result. e.g. multiplication
of two width-bit numbers
results in a width*2-bit
number. The output should be
the lower width bits)

‘1’ if input1*input2 is bigger than the maximum
number that can be written to output,

‘0’ otherwise

0011 Input1 and input2 ‘0’
0100 Input1 or input2 ‘0’
0101 Input1 xor input2 ‘0’
0110 Input1 nor input2 ‘0’
0111 Not input1 ‘0’
1000 Shift input1 left by 1 bit the high bit of input1 before the shift
1001 Shift input1 right by 1 bit ‘0’

Turn in on e-learning: decoder7seg.vhd and decoder7seg_tb.vhd. The TAs will grade your VHDL
by running it using a testbench that I am providing. Therefore, it is critical you do not change the
entity declaration.

Lab 2: Generic-Width Behavioral ALU
EEL 4712 – Fall 2019

1010

Swap the high-half bits of input1
with the low-half bits of input1,
write this to output. In the
case of an odd width, use 1
extra bit from the high half.
For example, 0101000 should
become 0000101.

‘0’

1011 Reverse the bits in input1, write
this to output

‘0’

1100 Display odd/even flag in width
amount of bits for input1

‘0’

1101 Output the 2’s complement of
input1

‘0’

1110 0 ‘0’
1111 0 ‘0’

Create a VHDL testbench entity (alu_ns_tb). Save the entity in alu_ns_tb.vhd. There is small sample
testbench on the lab website, but it is up to you to determine the thoroughness of the testbench. It should
test enough cases so you are positive that the architecture is correct. Although the entity must be defined
using numeric_std, you can use any package you like for the testbench. Note that the provided example
uses std_logic_arith to demonstrate different functions.

3. Design the same generic-width ALU using std_logic_arith and std_logic_unsigned (instead of

numeric_std). The entity should be saved in alu_sla.vhd, along with a new testbench in
alu_sla_tb.vhd. Note that the exact same testbench code can be used. All you have to do is change
the name of the alu component that is instantiated. Make sure to use this exact entity specification:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity alu_sla is

generic (
WIDTH : positive := 16

);
port (

input1 : in std_logic_vector(WIDTH-1 downto 0);
input2 : in std_logic_vector(WIDTH-1 downto 0);
sel : in std_logic_vector(3 downto 0);
output : out std_logic_vector(WIDTH-1 downto 0);
overflow : out std_logic

);
end alu_sla;

Turn in on e-Learning: alu_ns.vhd and alu_ns_tb.vhd. The TAs will grade your VHDL by
running it using a testbench that I am providing. Therefore, it is critical you do not change the
entity declaration.

Turn in on e-learning: alu_sla.vhd and alu_sla_tb.vhd. The TAs will grade your VHDL by
running it using a testbench that I am providing. Therefore, it is critical you do not change the
entity declaration.

Lab 2: Generic-Width Behavioral ALU
EEL 4712 – Fall 2019

4. Integrate your code with the top_level structural entity top_level.vhd (linked off the lab website). Feel

free to change the ALU component to use either the numeric_std or std_logic_arith versions. The
choice is yours. Make sure you understand which input maps to which switch or button.

In-lab procedure:
1. Using Quartus, assign pins to each of the top_level.vhd inputs/outputs such that the signals are

connected to the appropriate locations on the board.
• Assign the 4 bits of input1 to the leftmost slide switches
• Assign the 4 bits of input2 to the next four slide switches
• Assign 4 bits of the Select input to the two rightmost slide switches and the 2 push buttons
• Assign the outputs of the four 7-segment decoders to four 7-segment LED displays
• Assign the four decimal point (DP) outputs to the corresponding 7-segment LED displays

2. Download your design to the board, and test it for different inputs and outputs. The TA will ask you to
demonstrate at least one example for each possible select.

3. Be prepared to answer simple questions or to make simple extensions that your TA may request.
There is no need to memorize the different packages. If you have done the pre-lab exercises, these
questions should not be difficult.

Lab report: (In-lab part only)
If you had any problems with portions of the lab that could not be resolved during lab, please discuss
them along with possible justifications and solutions. If you had no problems, this report is not necessary.

Turn in on e-learning: A graphical illustration of how the provided VHDL connects the
components together. Save the illustration in whatever format is convenient (e.g., pdf, jpeg).

Turn the lab report in on e-learning, if explanation is needed for partial credit. Make sure to turn it
in to the “lab” section and not the “pre-lab” section.

