
Directed Test Generation using Concolic Testing on
RTL models

Alif Ahmed, Farimah Farahmandi and Prabhat Mishra
Department of Computer & Information Science & Engineering

University of Florida, USA

Abstract—Functional validation is one of the most time con-
suming steps in System-on-Chip (SoC) design methodology. In
today’s industrial practice, simulating designs using billions of
random or constrained-random tests can lead to high functional
coverage. However, it is hard to cover the remaining small
fraction of corner cases and rare functional scenarios. While
formal methods are promising in such cases, it is infeasible
to apply them on large designs. In this paper, we propose a
fully automated and scalable approach for generating directed
tests using concolic testing of RTL models. While application of
concolic testing on hardware designs has shown some promising
results, existing approaches are tuned for improving overall
coverage, rather than covering a specific target. We developed
a Control Flow Graph (CFG) assisted directed test generation
method that can efficiently generate a test to activate a given
target. Our experimental results demonstrate that our approach
is both efficient and scalable compared to the state-of-the-art test
generation methods.

I. INTRODUCTION

In this paper, we propose an approach to address line
reachability problem for hardware designs. That is, given a
target line or branch statement in a RTL model, can we find
a test vector to cover that particular target? This type of
directed test generation is important in many scenarios, like for
debugging purposes, or for covering hard to reach corner cases.
Goal of directed test generation is different from uniform
test generation in a sense that directed test only cares about
covering the specific target, rather than maximizing overall
coverage. While uniform test will eventually reach the required
target statement, it may take very long time.

Many formal and semi-formal directed test generation meth-
ods have been proposed over the years. However, formal
methods often do not scale well with the design complexity or
sequential depth [1]. For example, bounded model checking
statically unrolls the design and considers all possible exe-
cution paths. Such unrolling mechanism leads to state space
explosion, limiting its applicability to only small designs. In
recent years, a semi-formal method named concolic testing
is gaining momentum because it does not suffer from state
explosion problem. This is due to the fact that the concolic
testing considers only one program execution path at a time.

Concolic testing has been successfully applied on both
hardware and software designs [2]–[4]. In hardware domain
however, existing concolic testing methods offer uniform tests,
and are not tuned for directed test generation. In software do-
main, structural information provided by CFG have been used

This work was partially supported by grants from NSF (CNS-1441667),
SRC (2014-TS-2554) and Cisco.

to efficiently guide concolic testing towards coverage target
[5], [6]. However, effectiveness of such approach on hardware
designs (which is highly concurrent) is an unexplored territory.
While test generation in software domain deals with only
one CFG, developing a test generation method for hardware
designs needs to handle multiple concurrent CFGs. Moreover,
it has to deal with the complexity of unrolling CFGs across
multiple clock cycles. In this paper, we propose an efficient
and scalable test generation approach which addresses these
challenges.

Our proposed approach statically calculates distance from
target statement by doing a precondition analysis on the CFG.
This distance metric is used by concolic testing to efficiently
guide the search, eventually converging to the target. To the
best of our knowledge, this is the first attempt to apply con-
colic testing on hardware designs for directed test generation.
Experimental results demonstrate that our approach scales
well with design complexity compared to formal methods.
Additionally, compared to other state-of-art test generation
methods, it converges to target with significantly less number
of iterations.

Our primary contributions in this paper are as follows:
• We propose a technique to statically measure target

distance in a multi-process multi-cycle environment such
as RTL models. This distance calculation works without
unrolling the state space.

• We propose a concolic testing based scalable directed
test generation approach for RTL models. This method
utilizes distance feedback to efficiently guide the search
towards the target.

• Provided experimental evidence supporting effectiveness
and scalability of our test generation scheme.

The remainder of the paper is organized as follows. Sec-
tion II describes our directed test generation methodology
in details. Section III discusses some critical challenges and
optimizations. Experimental results are analyzed in Section
IV. Prior works on test generation techniques are discussed in
Section V. Finally, we conclude our paper in Section VI.

II. AUTOMATED GENERATION OF DIRECTED TESTS

Figure 1 presents the overview of our proposed method.
Given a RTL design, our goal is to generate a test vector
to cover a target statement. Following sections describe four
major steps of out proposed approach - CFG generation, edge
realignment, priority evaluation and concolic testing.

CFG GenerationDesign TargetEdge RealignmentDistance EvaluationConcolic TestingTest Vector
Fig. 1. Overview of the proposed test generation framework.

A. CFG Generation

Hardware description languages (HDL) use concurrent
model of computation. The examples of concurrent statements
include process statements in VHDL and always statement in
Verilog. For ease of presentation, we use the term ‘process’
to refer to these concurrent statements in RTL models. Rest of
the section describes CFG generation and unrolling procedure
for processes.

CFG generation for each process: Within a single process,
execution is sequential. So the CFG of a single process can be
derived easily by following the procedure established for se-
quential programs. Running such an algorithm will divide the
program into many basic blocks. A basic block is a sequence
of statements without any branching. Furthermore, each basic
block have a set of successor and predecessor blocks. The
blocks to which control may transfer after reaching the end
are referred as successor blocks, and the blocks from which
control may come are referred as predecessors.

An example Verilog code with two processes and their
corresponding CFGs is shown in Figure 2. The code is from a
simple sequence detector, which changes state depending on
the given input sequence. In the figure, each of the rectangle
represents a basic block. From now on, bbx will be used
to denote the basic block containing line lx. For example,
predecessor of bb6 is bb4 and successors are bb7 and bb9. The
circle represents exit basic block.

Mulit-cycle process unrolling: Unrolling for multiple cycles

l
1

l
2

l
3

l
4

l
5

l
6

l
7

l
8

l
9

l
10

always @(posedge clock) beginif (reset == 1)state <= A;else if (in == 13) state <= B;else if ((in == 7) && (state == B))state <= C;elsestate <= A;end
l11
l12
l13
l14
l15
l16
l17
l18
l19
l20
l21 always @(posedge clock) beginif (reset == 1)out <= 0;else if (state == C)if (in == 13) out <= 1;elseout <= 2;elseout <= 3;end l2: if(reset==1)

l3: state<=A
l5: state<=B

l7: state<=Cl4: if(in==13)
l6: if((in==7) && (state==B))

l9: state<=A
l
12

: if(reset==1)
l13: out<=0

l16: out<=1l14: if(state==C)
l15: if(in==13)

l18: out<=2(a)(c) (b)(d) l20: out<=3
Fig. 2. An example Verilog code with two processes. Here in is input. (a)
Process 1, (b) CFG of Process 1, (c) Process 2, (d) CFG of process 2. In this
figure, left path is executed if the condition is true.

can be seen as padding multiple single cycle CFGs in sequence
- one for each clock. However, the unrolled CFG will consist
of only one structure repeated several times. Same effect can
be achieved by simply connecting entry block and exit block
together. This involves making the entry block successor of
exit block, and by making exit block predecessor of entry
block.

B. Edge Realignment

Upto this point, each process has its own CFG, and they
are not connected to each other. This poses an issue as inter-
process dependency information is not available. For example,
assume l15 is the target statement in Figure 2. To reach
l15, state must be equal to C. However, state variable is
manipulated in Process 1, while target l15 resides in Process
2. If distance values are assigned using current independent
CFG structures, dependency of target’s guard condition on
other processes will not be correctly reflected. To overcome
this issue, we have used an edge realignment procedure, which
modifies the edges of the CFG to more accurately represent
program flow across multiple processes and multiple cycles.
First, we define the terms used to describe the algorithm.

Dominator: In a graph, if all paths leading to node n goes
through node d, then node d is called a dominator of node n.
For example, in the CFG of Figure 2, l2 and l4 are dominators
of l5.

Immediate dominator: Among all the dominators D of a
node n, immediate dominator is the node which dominates
only n and not any other elements of D. In other words, it is
the dominator closest to n. For example, immediate dominator
of l5 is l4.

Strict variables: In this paper, strict variables are defined as
the variables to which only concrete values are assigned. In
the example, out is a strict variable, because all assignments
to out, which are l13, l15, l17 and l19 - are concrete values.
Similarly, state is also a strict variable. On the other hand, in
and reset are not strict variables.

The idea of edge realignment is to connect basic blocks to
the assignments that satisfies its guard condition, instead of its
current predecessors. This is necessary due to the fact that for
satisfying guard condition, execution must go through at least
one of these assignments.

Algorithm 1 shows this procedure. Most of its work is done
within recursive update edge(bbt) function, which realigns
the edges of bbt block. Initially, it is called with user defined
target (line 5 of main procedure). In update edge() function,
guard condition (lg) of the bbt is expanded first (line 3).
Necessity of expansion will be described in Section III. At
this point, two scenarios can occur - the expanded condition
contains strict variables, or it does not. Line 5-15 shows the
first scenario. In this case, current edge of bbt is removed first
(line 6). Next, all the assignments (la) to these strict variables
are checked if they are a valid precondition of lg . This can
be done by simply giving (lg ∧ la) to a constraint solver (line
9). If satisfiable, then the block containing la becomes the
new target, and its edges are realigned recursively by calling

Algorithm 1 Edge Realignment
Input: CFG, Target Statement lt
Output: Realigned CFG

1: for all basic block, bb ∈ CFG do
2: bb.visited← false // initialization
3: end for
4: Target basic block, bbt ← basic block(lt)
5: update edge(bbt)
6: return

update edge(bbt)

1: if bbt is valid and bbt.visited is false then
2: bbt.visited = true
3: lg ← expanded guard condition of bbt
4: Vs ← set of strict variables in lg
5: if Vs is not empty then
6: bbt.predecessors← ∅
7: for all variables v ∈ Vs do
8: for all assignments la to v do
9: if satisfiable(lg ∧ la) then

10: bba ← basic block(la)
11: add bba to bbt.predecessors
12: update edge(bba)
13: end if
14: end for
15: end for
16: else if bbi ← idom(bbt) then
17: update edge(bbi)
18: end if
19: end if

update edge(bba). On the other hand, if the expanded guard
condition does not contain any strict variable, then we go
to its immediate dominator and realigns its edges. A visited
flag is maintained to prevent multiple assessment of the same
block. Note that successor information is not updated in this
algorithm, because they will not be needed in the future.

Figure 3 illustrates modified CFG after edge realignment is
carried out on the example of Figure 2. Here, our initial target
is l16. According to Algorithm 1, initially update edge(bb16)
will be called. The guard condition of l16 is l15 : in = 13. As
this does not contain any strict variable, immediate dominator
of l16 (which is l15) becomes the new target. Guard condition
of l15 is l14 : state = C. This guard condition contains
one strict variable - state, which is assigned in l3, l5, l7
and l9. However, if we give (l14 ∧ l3), (l14 ∧ l5), (l14 ∧ l7)
and (l14 ∧ l9) to the constraint solver, only (l14 ∧ l7) will be
satisfiable. Therefore, the basic block containing l7 becomes
the predecessor of bb15. Also, l7 becomes the new target. This
procedure continues until there are no new basic blocks to
align.

C. Distance Evaluation

Once edge realignment is completed, every basic block is
assigned a distance value. Lower distance means it is closer
to target, or its precondition. Initially, distance of basic block
containing target statement is assigned 0, and all the other

l2: if(reset==1)
l3: state<=A
l5: state<=B

l7: state<=Cl4: if(in==13)
l6: if((in==7) && (state==B))
l9: state<=A l

12
: if(reset==1)

l13: out<=0
l16: out<=1l14: if(state==C)
l15: if(in==13)

l18: out<=2l20: out<=323 456 67 01∞

∞

∞

∞

∞

Fig. 3. CFG of example in Figure 2 after edge realignment and weight
assignment. Here target is l16. Omitted edges are shown using light solid
arrow. New edges are depicted as blue dashed arrow.

blocks are set to infinity. Distance of these blocks are updated
by carrying out breath first search starting from the target node.
The search propagated in the opposite direction of program
flow (target to root node) using the predecessor edges of basic
blocks. Algorithm 2 realizes this procedure using a queue.

Algorithm 2 Distance Evaluation
Input: CFG, Target Statement lt
Output: CFG with distance values

1: for all basic block, bb ∈ CFG do
2: bb.distance←∞
3: end for
4: bbt.distance← 0
5: Queue for distance evaluation, Q← {bbt}
6: while Q not empty do
7: bbt ← Q.pop()
8: for all bbp ∈ bbt.predecessors do
9: if bbp.distance > (bbt.distance+ 1) then

10: bbp.distance← (bbt.distance+ 1)
11: Q.push(bbp)
12: end if
13: end for
14: end while
15: return

Figure 3 shows CFG after evaluating priority values for the
target statement l16. These values are self explanatory except
for l3, l6 and l9. These values are due to the fact that exit
block is the predecessor of entry block to accommodate for
multi-cycle unrolling.

D. Test Generation using Concolic Testing

In concolic testing, the design is initially executed with a
random input vector. Then in each iteration of concolic testing,
distance values are utilized to force execution closer to target,
eventually converging.

Algorithm 3 shows this procedure. If the target is covered
during initial random simulation, input vector is immedi-
ately returned (line 1-5). If not, then one of the adjacent
branches of the current execution (τ) path is selected to be
explored next. We have selected branches depending on its
distance from target. Branches with lower distance will be
selected first. If two such branches have same distance, then

Algorithm 3 Concolic Testing
Input: CFG with distance values
Output: Test vector

1: Input vector, I ← random()
2: Execution path, τ ← simulate(I)
3: if target statement covered in τ then
4: return I
5: end if
6: B ← list of branches adjacent to τ
7: sort by distance(B)
8: for all branch b ∈ B and is selectable(b) do
9: C ← path constraints upto b

10: I ← constraint solver(C)
11: if I is valid then
12: decrease priority of b
13: goto 2
14: end if
15: end for
16: return invalid

the branch that comes earlier in the execution path will be
selected. The sort by distance() function in line 7 sorts
branches following this scheme. After sorting, branch with
lowest distance, b, is checked if it is valid for selection by
calling is selectable(b) function (line 8). This function does
two important jobs. First, it checks if at least one of the
preconditions of b is met. Second, it checks if selecting b will
match any previously traversed path. Details of these will be
discussed in Section III. Once branch selection is completed,
constraints upto and including that branch is given to the
constraint solver (line 9-10). If a satisfiable input vector is
found, iteration starts with this new input vector (line 11-14).
Otherwise, branch with next lowest distance is evaluated. This
procedure is repeated until target is covered or no satisfiable
branches are found.

As seen so far, this algorithm is greedy - always trying to
force execution through branches with lowest distance. How-
ever, such approach will result in exhausting lower distance
branches for all clock cycles before moving onto branches with
higher distance. This issue is resolved by increasing distance
of a branch each time it is selected (line 12).

Following table shows the concolic testing iterations for the
example of Figure 3. Reset sequence at clock 0 is omitted for

iter
execution path at sorted

branch
sel.

clock 1 clock 2 clock 3

0
l2, l4, l6, l9 l2, l4, l6, l9 l2, l4, l6, l9 l15, l7, l5

...
l5

l12, l14, l20 l12, l14, l20 l12, l14, l20

1
l2, l4, l5 l2, l4, l6, l9 l2, l4, l6, l9 l15, l7, l5

...
l7

l12, l14, l20 l12, l14, l20 l12, l14, l20

2
l2, l4, l5 l2, l4, l6, l7 l2, l4, l6, l9 l16, l15, l7

...
l16

l12, l14, l20 l12, l14, l20 l12, l14, l15, l18

3
l2, l4, l5 l2, l4, l6, l7 l2, l4, l6, l7 – –

l12, l14, l20 l12, l14, l20 l12, l14, l15, l16

clarity. In this table, fifth column shows the sorted branches
according to distance and sixth column shows the selected

branch. We can see that sometimes branches with lower
priority is selected. This is because either their preconditions
are not met, or it will lead to a previously traversed path.
For this specific example, our approach covers target at third
iteration.

III. DISCUSSION

A. Preventing selection of previously traversed path

Among all the alternate branches, sometimes a branch might
get selected which will lead to a previously exercised path.
This type of redundancy may lead to continuous looping
between same branches. One way to avert this issue is to
check whether the branch being selected is covered in the same
clock before. However, if there are multiple paths leading to
that branch, this scheme might prohibit going through some
prerequisite path leading to the target. A proper way would
require maintaining a set of execution paths (i.e. execution
tree) T . A branch should only be selected if the speculated
path does not exist in T .

To maintain a set of execution paths, each path must be
identified uniquely. Sequence of branches in the path can
be used for this purpose. However, maintaining a set of
branch sequences and frequently searching within this set
is not efficient. We used a combination of tabulation and
multiplicative hashing to map branch sequences for efficient
searching. This is performed within is selectable() function
in Algorithm 3.

B. Omitting conflicting clauses from other processes

Contrary to what happens in actual hardware, all the concur-
rent processes are executed in sequence by a simulator. This
false sense of sequential execution can produce misguiding
conflicting clauses.

To illustrate this issue, consider the example of Figure 2.
Here Process 1 and Process 2 are concurrent. However, sup-
pose the simulator used for generating trace executes Process
1 before Process 2. Also, assume that state = C and in = 13
at current time frame t. This will make following execution
path: τ = (¬l2, l4, l5,¬l12, l14, l15, l16)t. Now suppose we
want to go to l18 by negating l15. For this, we will provide
(¬l2, l4, l5,¬l12, l14,¬l15)t to the constraint solver. In this
case solver cannot come up with a solution because ¬l15 will
conflict with l4. This problem will persist even if unrolled
for more than two cycles. However, it is actually possible
to go to l18 by setting in to any value other than 13. If
the simulator executed parent process of l15 before any other
process, this problem could have been avoided. For example,
if Process 2 was executed before Process 1, τ would become
(¬l12, l14, l15, l16,¬l2, l4, l5)t. When negating l15, following
constraints would be given to solver: (¬l12, l14.¬l15)t. This
time, the conflicting clause l4 does not appear anymore, and
solver can come up with a satisfiable test.

We prevented this problem with following procedure. First,
all the processes that will execute at the same time frame are
grouped together. Next, we determine the parent process and
time frame of the branch being selected. Finally, all the clauses

that occurred in the same time frame and belong to the same
group, but not in the same process are ignored. In case of
the previous example, both Process 1 and Process 2 falls into
the same group. If we want to negate l15 as before, parent
process of l15 is Process 2, and its clock cycle is t. Following
our suggested method, (¬l2, l4, l5)t clauses would be skipped
here, eliminating the conflict.

C. Necessity of guard condition expansion

As mentioned in the edge realignment section, before de-
termining the satisfying assignments for a guard condition,
the condition is expanded. To illustrate expansion procedure,
consider the following Verilog statement: assign a = b&c;,
where b and c are strict variables. Now, for a guard con-
dition of if(a==1), the expanded guard condition will be
if((b&c)==1). If we do not expand the guard condition, then
edge will be aligned for the immediate dominator instead of
itself. On the other hand, for the expanded guard condition,
as it contains strict variables, edge realignment will be done
properly. A valid concern at this point would be - why are
we not using complete data flow analysis instead of guard
expansion and strict variables? We avoided complete data flow
analysis because it would require state unrolling of CFG and
is susceptible to state space explosion.

D. Optimization to reduce solver calls

During edge realignment procedure, precondition of many
branches are evaluated. This information can be used to
reduce unnecessary solver calls. While selecting a branch for
negation, it is evident that control flow must go through at
least one of the preconditions for the branch selection to be
satisfiable. More specifically, if the precondition is a blocking
assignment, then it must be covered in the same or any
previous time frame. On the other hand, if the precondition
is a non-blocking assignment, then it must be covered in any
previous time frame. If this criteria is not met, then trying
to force through that particular branch will always result in
conflicting constraints. This check is done by is selectable()
function of Algorithm 3. Skipping such branches saves solver
calls and in turn improves performance.

IV. EXPERIMENTS

A. Experimental Setup

Experiments are conducted in a machine with Intel Core-i7
6700k processor and 16GB of RAM. Benchmarks are collected
from TrustHub, ITC99 and OpenCores [7]–[10]. Most of these
benchmarks contain hard to cover branches. The concolic
testing framework is implemented using open-source Icarus
Verilog Target API [11]. Simulation for concrete execution
stage is also carried out using Icarus Verilog. Yices SMT solver
is used for solving symbolic constraints [12].

B. Evaluation of Scalability

To demonstrate the scalability of our approach, we have
compared it with bounded model checking based tool EBMC
[13]. AES cipher from OpenCores is used as base design,

TABLE I
SCALABILITY COMPARISON WITH MODEL CHECKING

Benchmark
Unroll
cycles

Lines of
code*

EBMC [13] Our Approach
Time (s) Mem (MB) Time (s) Mem (MB)

cb aes 01 5 33 k 1.27 179.4 0.51 55.3

cb aes 05 10 167 k 11.47 1450.3 4.03 244.3

cb aes 10 15 334 k 33.17 4130.6 14.47 502.4

cb aes 15 20 501 k 70.78 8041.2 32.14 778.2

cb aes 20 25 668 k 110.13 13202.8 86.03 1085.5

cb aes 25 30 886 k – – 150.54 1405.3

cb aes 30 35 1003 k – – 243.02 1780.3

cb aes 35 40 1169 k – – 371.23 2112.7

cb aes 10 15 334 k 33.17 4130.6 14.47 502.4

cb aes 10 20 334 k 42.72 5361.8 15.33 520.2

cb aes 10 25 334 k 53.78 6628.8 16.25 542.6

cb aes 10 30 334 k 64.12 7871.5 17.22 563.7

cb aes 10 35 334 k 74.32 9119.5 18.47 582.5

cb aes 10 40 334 k 84.57 10361.3 19.36 608.0
* after hierarchy flattening

and we varied its round number to tune design complexity.
These benchmarks are named as cb aes xx, where xx refers to
the number of rounds. These rounds are cascaded sequentially
and the final activation condition is chosen in such a way
that it depends on all intermediate stages. This ensured that
increasing circuit complexity will increase difficulty of test
vector generation. Furthermore, as the activation condition
depends on the last round’s output, these benchmarks must
be unrolled for at least the number of rounds it contain, and
more if there is any reset sequence.

Table I compares the time and memory consumption of
EBMC and our approach. Here, first 8 rows mainly highlight
the effect of increasing design complexity. For EMBC, we can
see that memory requirement grows exponentially with design
complexity. It exceeds available memory after cb aes 20 and
fails to generate a test. On the other hand, we can see a linear
increase in memory requirement for our approach. Time is in
similar range for both, with our approach being faster.

The last 6 rows show the effect of varying unroll cycles,
keeping design complexity constant. For EBMC, memory
consumption increased by 150.8% and when changing unroll
cycles from 15 to 40. Similarly, time requirement increased by
155%. On the other hand, unrolling more with keeping design
complexity same have much less impact on our concolic
testing based approach - with memory and time increasing
by 21% and 33.8% respectively.

In summery, unlike bounded model checking based ap-
proaches, proposed approach scales well with both design
complexity and unroll cycles.

C. Evaluation of Coverage

We compared our approach against uniform coverage con-
colic testing method (QUEBS [14]) and directed concolic
testing method (CFG-Directed, which is a naive extension of
[5] to apply on RTL models). For ITC99 and OpenCore bench-
marks, target branches are selected in two ways - random and
rare. For random target selection, five reachable branches are
chosen randomly, and then results are averaged. For rare type,

TABLE II
PERFORMANCE COMPARISON BETWEEN TEST GENERATION METHODS

Benchmark
Unroll
Cycles

Target
QUEBS [14] CFG-Directed* Our Approach

Time(s) Iter Time Iter Time(s) Iter

b06 10
rand 0.02 13.6 0.02 9.4 0.01 3
rare 0.02 20 0.01 7 0.01 5

b10 30
rand 0.11 245.4 0.01 4.4 0.01 1.4
rare 0.13 301 0.01 5 0.01 1

b14 30
rand 0.61 564 0.01 8.4 0.01 3.6
rare 0.90 814 0.01 21 0.01 1

i2c 10
rand – – 1.62 356.4 0.57 21.2
rare – – 4.09 1123 0.98 40

OR1200
ICache

50
rand 0.23 155 0.13 27.2 0.02 5.4
rare 0.34 224 0.20 34 0.02 9

AES-T1000 10 trojan – – 4.67 1 3.88 1

AES-T1100 10 trojan – – 19.62 7 11.80 4

wb conmax
T200

10 trojan – – – – 13.36 1

wb conmax
T300

10 trojan – – – – 11.06 1

* extension of [5] to apply on RTL models.

benchmarks are simulated with random inputs for one million
cycles, and then the branch that is covered least number of
times is selected as target. TrustHub benchmarks contains
malicious Trojans with extremely difficult to activate trigger
conditions. Triggers are used as target for these benchmarks.

Table II presents the comparison results in terms of test
generation time and number of iterations. If a test vector is
not generated within 2000 iterations, it is considered as a
fail. As we can see, both QUEBS and CFG-directed failed
for some targets with the imposed iteration limit. This result
is expected from QUEBS, because it is designed with over-
all coverage in mind. Compared to CFG-directed, proposed
approach improved number of iterations by 16.8 times on
average (without considering the failed cases of wb conmax).
Overall, our method managed to cover targets with different
characteristics within a small number of iterations.

V. RELATED WORKS

Extensive research has been conducted on directed test gen-
eration. Symbolic backward execution (SBE) based strategies
starts from the target statement and symbolically executes
the program backwards until it reaches an entry point [15]–
[17]. However, backward exploration is susceptible to path
explosion problem, and faces difficulty in presence of non-
linearity or data dependent loops. Burnim et al. proposed an
approach, which statically assigns distance values to CFG
for guiding forward execution. A similar method is proposed
in [6], which evaluates the control flow edges that must be
covered to reach target statement. Unfortunately, all of these
approaches considers only sequential (software) models, and
are not directly applicable on hardware designs.

Bounded model checking has been used to enables directed
test generation on hardware designs [13], [18]. However, they
are prone to state explosion problem, and cannot be applied
on large designs. Concolic testing has been used for covering
branch statements in RTL models using depth-first search [4]

as well as heuristically guiding execution towards uncovered
branches [19]. Qin et al. added support of dynamic array
references in concolic testing [20]. An exhaustive strategy is
proposed recently, in which fully explored states are cached
and prevented from redundant exploration [21]. Ahmed et al.
proposed a concolic testing framework with tunable parameter
to control search effort within a region [14]. Unfortunately,
these methods tries to maximize overall coverage, and are not
designed for directed test generation.

VI. CONCLUSION

In this paper, we have proposed an automated and scalable
technique for directed test generation of RTL models. Our
approach used precondition analysis to statically determine the
target distance in the CFG of a design. This analysis avoided
state explosion issue by exploiting the structural similarity of
CFG across multiple clock cycles. Distance determined from
this analysis is then effectively utilized by concolic testing
framework to guide execution towards target. Experimental
results demonstrated that our approach scales well with design
size, both in terms of test generation time and memory
requirement. Furthermore, it provided a drastic reduction in
the required number of iterations compared to the state-of-
the-art test generation methods.

REFERENCES

[1] Chen et al., System-level validation: high-level modeling and directed
test generation techniques. Springer Science & Business Media, 2012.

[2] Sen et al., “CUTE: a concolic unit testing engine for C,” in SIGSOFT,
vol. 30, 2005, pp. 263–272.

[3] Godefroid et al., “DART: directed automated random testing,” in SIG-
PLAN, vol. 40, 2005, pp. 213–223.

[4] L. Liu and S. Vasudevan, “STAR: Generating input vectors for design
validation by static analysis of RTL,” in HLDVT, 2009, pp. 32–37.

[5] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”
in ASE, 2008, pp. 443–446.

[6] C. Zamfir and G. Candea, “Execution synthesis: a technique for auto-
mated software debugging,” in EuroSys, 2010, pp. 321–334.

[7] Tehranipoor et al., “TrustHub,” On-line: https://www.trust-hub.org, 2017.
[8] Salmani et al., “On design vulnerability analysis and trust benchmarks

development,” in ICCD, 2013, pp. 471–474.
[9] F. Corno et al., “RT-level ITC’99 benchmarks and first ATPG results,”

IEEE Design & Test of Computers, vol. 17, pp. 44–53, 2000.
[10] “OpenCores website,” On-line: https://www.opencores.org, 2017.
[11] S. Williams, “Icarus verilog,” On-line: http://iverilog.icarus.com/, 2006.
[12] B. Dutertre and L. De Moura, “The yices smt solver,” Tool paper at

http://yices. csl. sri. com/tool-paper.pdf, vol. 2, pp. 1–2, 2006.
[13] Mukherjee et al., “Hardware verification using software analyzers,” in

ISVLSI, 2015, pp. 7–12.
[14] A. Ahmed and P. Mishra, “QUEBS: Qualifying event based search in

concolic testing for validation of RTL models,” in ICCD, 2017.
[15] F. Charreteur and A. Gotlieb, “Constraint-based test input generation for

java bytecode,” in ISSRE, 2010, pp. 131–140.
[16] Chandra et al., “Snugglebug: a powerful approach to weakest precondi-

tions,” SIGPLAN, vol. 44, pp. 363–374, 2009.
[17] P. Dinges and G. Agha, “Targeted test input generation using symbolic-

concrete backward execution,” in ASE, 2014, pp. 31–36.
[18] Cimatti et al., “NuSMV 2: An opensource tool for symbolic model

checking,” in CAV, 2002, pp. 359–364.
[19] L. Liu and S. Vasudevan, “Efficient validation input generation in RTL

by hybridized source code analysis,” in DATE, 2011, pp. 1–6.
[20] X. Qin and P. Mishra, “Scalable test generation by interleaving concrete

and symbolic execution,” in VLSID, 2014, pp. 104–109.
[21] L. Liu and S. Vasudevan, “Scaling input stimulus generation through

hybrid static and dynamic analysis of rtl,” TODAES, vol. 20, p. 4, 2014.

