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Abstract—Intellectual Property (IP) based System-on-Chip
(SoC) design is a widely used practice today. The IPs gathered
from third-party vendors may not be trustworthy since they
may contain malicious implants (hardware Trojans). To avoid
the detection of the Trojan, adversaries usually hide it under
rare branches or rare assignments triggered under extremely
rare input sequences. Due to exponential input space complexity,
state-of-the-art constrained-random test generation methods are
not suitable for activating these rare scenarios. While existing
model checking based directed test generation approaches are
promising, they are not capable of generating tests for large RTL
designs due to the capacity restrictions of formal methods. In this
paper, we propose an automated and scalable test generation
approach for activation of hardware Trojans in RTL designs.
This paper makes three important contributions. First, it provides
a scalable test generation framework by effective utilization of
symbolic execution and concrete simulation. Next, it is a fully
automated approach for generating directed tests for activating
rare branches and rare assignments. Finally, our experimental
results demonstrate that the generated tests are able to activate
hard-to-cover Trojans in large and complex RTL benchmarks.

I. INTRODUCTION

Modern System-on-Chip (SoC) designs consist of a wide
variety of computation, communication and storage related
Intellectual Property (IP) blocks. Developing and verifying
each of these IP blocks in-house is infeasible due to time-
to-market and budget constraints. It is a common trend in
industry to rely on third-party IPs to keep the cost low and to
meet firm deadlines. However, using IPs gathered from third-
party vendors introduces security and trust concerns. These IPs
may come with hardware Trojans inserted by an adversary.
These hardware Trojans can be hidden in a way such that
they are triggered under extremely rare input sequences. As a
result, traditional validation approaches are unable to activate
them. A Trojan can leak secret information, create backdoor
for attackers, alter functionality, degrade performance, halt the
system, etc. [1]–[4]. Therefore, it is crucial to have effective
validation techniques to detect hardware Trojans.

Trojan detection methods based on side-channel analysis
monitor changes in physical characteristics such as power and
delay [5]–[8], [65]. However, these approaches cannot detect
functional hardware Trojans since they usually consist of a few
gates which have a negligible impact on physical characteris-
tics. The other class of methods relies on statistical parameters
to distinguish Trojan-inserted circuits from Trojan-free circuits
[9], [10]. Unfortunately, many times these methods provide

false positives even if the circuit is Trojan-free. Logic testing
based methods focus on functional comparison instead of look-
ing at side-channel signatures. These techniques require input
vectors for activating the Trojan to measure the deviation from
expected behavior. Researchers have proposed model checking
approaches [11] for activating hardware Trojans. However,
these methods suffer from inherent capacity restrictions of
formal methods while dealing with large designs. Therefore,
such methods are not effective for activating hardware Trojans
in complex register-transfer level (RTL) models.

In this paper, we propose a directed test generation method
to activate potential hardware Trojans in RTL designs using
concolic testing. Concolic testing is an effective combination
of concrete simulation and symbolic execution. Unlike formal
methods, concolic testing is scalable since it can avoid state
space explosion by exploring one execution path at a time.
While concolic testing has shown promising results in software
verification domain [12], [13], it has not been explored in the
context of test generation for detecting hardware Trojans. This
paper makes the following four important contributions.

• To the best of our knowledge, our proposed approach is
the first attempt in developing an automated and scalable
technique to generate directed tests to activate hardware
Trojans in RTL models.

• We develop a threat model involving rare branches and
rare assignments for RTL designs. This threat model leads
to a list of potential security targets for directed test
generation.

• We propose an effective combination of concrete simula-
tion and symbolic execution to generate directed tests to
activate these security targets.

• We show that detection of hardware Trojans boils down
to coverage of rare branches and assignments in RTL
models. Our experimental results demonstrate the ef-
fectiveness of our approach by activating hard-to-detect
Trojans in large and complex benchmarks.

The remainder of the paper is organized as follows. We
discuss related work in Section II. We provide an overview of
concolic testing in Section III. We present our threat model in
Section IV. Section V describes our test generation framework
for Trojan detection. Section VI presents our experimental
results. Finally, Section VII concludes the paper.
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II. RELATED WORK

Existing Trojan detection techniques can be broadly classi-
fied into the following four categories: side channel analysis,
statistical methods, formal verification, and functional test
generation.

A. Side-Channel Analysis

Existing techniques based on side channel analysis rely on
the change of physical characteristics caused by the Trojan
circuit - mostly in the form of current, power or delay [6],
[14], [15]. When a Trojan is partially or fully activated, it
would increase the switching activity compared to Trojan
free circuit. Wang et al. used this property to isolate Trojan
[5]. MERS utilized test generation to improve the Trojan
detection sensitivity [7]. Their approach selected the nodes
with low transition probability as suspicious nodes. Then test
vectors are applied in such a way that switching activity
of these suspicious nodes become much higher than other
nodes, increasing side-channel emission. Side-channel based
approaches face difficulty if the Trojan circuit is small. This
is because of the difference in side channel signature due to the
Trojan can be negligible compared to process variations. These
methods also require Trojan free golden reference models. As
side-channel analysis is carried out after fabrication, the chip
may require re-spins if Trojan is detected. Thus, methods that
can detect Trojan in the design stage is highly desirable.

B. Statistical Methods

Statistical Trojan detection methods try to differentiate the
Trojan-inserted circuit from the Trojan-free version using
properties of known Trojans. FANCI is one such approach
[9]. FANCI marks gates that weakly influence output signals
as suspicious. Their proposed algorithm uses approximate truth
table for each signal to infer its effect on the outputs. However,
FANCI has a high false positive rate. A similar method named
VeriTrust marks redundant logic gates as suspicious [10].
Initially, all gates that are not covered during verification
phase are considered as suspicious nodes and further analysis
is carried out to confirm redundancy. FANCI and VeriTrust
can detect only Trojans with always on or combinational
type triggers (a trigger that depends only on current inputs).
They cannot detect sequential Trojans, which is exploited by
DeTrust benchmarks [16]. Hicks et al. proposed an approach
for defeating Trojan based on unused circuit detection [17].
This method relies on the assumption that Trojan circuits
will reside on unused portion of the circuit. However, their
algorithm failed to detect Trojans that do not rely on unused
circuits [18].

A score based classification method for detecting Trojan
is discussed in [19]. The classification features are based on
properties found from Trojans in Trust-Hub benchmarks [20].
Scores are given to nets for each of the matching features.
Nets with score above a threshold are marked as Trojan nodes.
Unfortunately, these features are too specific to Trust-Hub
benchmarks and thus cannot be used as a generic detection
method. A recent approach proposed by Salmani et al. [21]

uses SCOAP1 controllability and observability values to detect
and isolate Trojan nodes. Controllability is defined as the
number of primary inputs that must be manipulated to control
a signal to a particular logic value. Observability is the number
of primary input manipulations which is required to make a
signal observable at the primary outputs. This method works
using the assumption that Trojan nodes will have higher con-
trollability/observability values to avoid detection. However,
this approach will result in false positives in designs with
partial scan chains. Benign signals that are not part of the scan
chain will also have controllability/observability values similar
to Trojans. Recently, a Trojan clustering approach based on
signal correlation is proposed in [23]. However, this method
is suitable for gate-level designs, and cannot be extended to
RTL models for early detection.

C. Formal Techniques

Researchers have proposed techniques based on formal
methods to prove security-related properties that would be
violated in the presence of Trojans. These methods are par-
ticularly effective for detecting Trojans inside cryptographic
designs. One such method - GLIFT, looks for confidentiality
and integrity property violation [11]. Confidentiality property
requires that secret information never leaks to an unsecured
domain and integrity property requires that untrusted data
never enters the secured domain. Information flow is traced
by assigning a taint bit to it. In another approach [24], a
base property is used to detect information leakage which
may imply the existence of a Trojan. The base property
checks whether any input sequence exists such that it triggers
secret information leakage to an observable point. The authors
have proposed another test generation technique for Trojan
detection using bounded model checking (BMC) [25]. This
technique looks at the critical data registers such as processor
stack pointer, router address table or cryptographic keys to
generate security properties. However, the strength of these
approaches is dependent on the quality of the security prop-
erties. Writing meaningful security properties that can detect
Trojans often requires manual effort and full insight about
internal circuit operations [66].

Equivalence checking is another way of formally proving
a circuit is Trojan free. Such approaches require a golden
specification to verify if it is equivalent to the implementation.
Trojan inserted implementation will demonstrate functionality
outside of the specification. However, traditional equivalence
checking techniques suffer from state explosion problem. Sev-
eral approaches have been proposed using Gröbner basis the-
ory to alleviate this problem [26]–[30], [64]. These techniques
express both specification and implementation as polynomials,
and reduce the specification polynomials over a subset of
implementation polynomials. If both are equivalent, then the
reduction procedure should result in a zero remainder. Any
non-zero remainder indicates deviation from the specification.
Such methods not only detect the existence of a Trojan, but

1SCOAP: Sandia Controllability/Observability Analysis Program [22]
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also can isolate the Trojan circuit and generate test vector for
activation. Unfortunately, these approaches do not work when
the specification is not available.

D. Functional Test Generation

Chakraborty et al. proposed MERO [31] which excites the
rare nodes multiple times in order to increase the likelihood of
Trojan activation. It is extremely difficult to detect the Trojans
using such statistical tests due to the stealthiness of activation
condition. Besides, this technique is only applicable to gate-
level designs and does not guarantee whether the generated
tests can activate the Trojans. Usually complete coverage is
required to detect Trojans [32]. Researchers have explored
other gate-level test generation techniques, like Automated
Test Pattern Generation (ATPG). Cruz et al. have proposed
a test generation technique that combines the strength of
model checking and ATPG for efficient test generation [33].
Their approach partitions the design based on the scan chain.
Constraints are generated for non-scan elements using model
checking. These constraints as well as the scan elements are
then given to ATPG for test generation. This approach is
suitable only for partial scan-chain inserted designs.

In summary, none of the existing techniques can effectively
activate hardware Trojans in RTL designs. In this paper,
we present a scalable directed test generation method for
Trojan activation using an effective combination of concrete
simulation and symbolic execution of RTL models.

III. BACKGROUND: CONCOLIC TESTING

Concolic testing generates tests by effective combination
of concrete simulation and symbolic execution. The idea was
first demonstrated in software domain, and later applied on
hardware designs [35]–[38]. Figure 1 presents an overview
of the concolic testing methodology [34]. Depending on the
objective of the test generation, concolic testing can maximize
coverage by forcing execution through different branches or
can guide the execution towards a specific branch. It does
so by alternating between concrete simulation and symbolic
execution of the design. The first step involves the simulation
of the design. For initial simulation, usually random inputs
are used. The execution path taken by the simulation can
be decomposed into a set of constraints, referred as path
constraints (C =< c1, c2, ..., cn >). Next step is to force
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Fig. 1. Typical flow of a concolic testing engine [34].
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Fig. 2. CFG traversal of different concolic testing methods. S is the start
(current) node and T is the target. Covered nodes are dark colored. (a) Random
selection: T is not covered. (b) Uniform tests using concolic testing: T is
covered after many iterations. (c) Directed tests using proposed approach: T
is quickly covered.

the execution through an alternate branch. In order to do
so, constraint of the selected branch (ck) is negated and
the desired path constraints for this alternate path is formed
(C ′ =< c1, c2, ...,¬ck >). These new path constraints are
then symbolically solved using a constraint solver. If the
solver comes up with a solution input set, then for that input
execution will go through this alternate branch. If no solution
is found, another branch is selected for negation. These steps
are repeated until required target branch is reached, or there
is no solvable branch left. Other termination criteria such as
timeout or coverage goal can also be used. Concolic testing
avoids state explosion issue by exploring only one path at a
time, instead of trying to explore all possible paths at once.
This advantage makes it an attractive choice for large and
complex designs.

Depending on the objective, different strategies can be
adopted for alternate branch selection as shown in Figure 2.
The simplest one is random or constrained-random selection
[39] (Figure 2(a)). However, it is not suitable for our goal
of covering particular suspicious branches. As this strategy
is random, it does not provide any guarantee of covering
the target branch (shown as T in the figure). An alternate
strategy is uniform selection, where the goal is to maximize
branch coverage (Figure 2(b)). Most concolic testing based
test generation techniques use this strategy [12], [13], [34]–
[38], [40]–[43]. Uniform search is effective if we want to
cover all possible branches. For our goal of Trojan activation,
uniform search will eventually reach the target node but may
take infeasibly long time. This is mostly because such search
strategies do not prioritize a particular branch. The third
strategy is directing execution towards a particular target node
(Figure 2(c)). This strategy is most suitable for our objective as
it will enable us to quickly cover the suspicious nodes without
going through unnecessary branches. There has been extensive
research on directed test generation using different methods
[44]–[51]. Researchers have used concolic testing for directed
test generation as well [39], [52]–[55]. However, these con-
colic testing methods only consider sequential execution mod-
els and are not applicable on hardware (concurrent) designs.
In this paper, we propose a concolic testing based directed test
generation approach for RTL designs. Our proposed method
utilizes distance feedback to quickly reach the desired security
targets.
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Fig. 3. Hardware Trojan taxonomy [3], [56], [57]. A wide variety of Trojans (shown in brown shaded box) can be activated using our proposed method.

IV. THREAT MODEL

Figure 3 gives an overview of the types of Trojans that can
be detected using the proposed approach. Although we have
applied our method on RTL designs, it can be easily extended
to higher levels of abstraction such as transaction-level models.
It is possible to extend our approach on gate-level models
if we have a clear mapping for branches. As our detection
algorithm utilizes test generation for Trojan activation, Trojans
that are always on cannot be covered by our approach. Side
channel or unused circuit detection-based approaches are more
suitable for such Trojans. On the other hand, our approach is
effective when the Trojan must be triggered - either externally
or internally.

An adversarial threat model for our proposed approach
is presented in Figure 4. Our method detects Trojan during
the verification of RTL design. Thus, Trojans inserted at
specification or design stage can be caught. In our threat
model, the untrusted-third party IPs can come with malicious
implants. Untrusted EDA tools, in-house rogue employees or
the SoC integrator can also insert hard-to-detect Trojans in
the original RTL design. We assume that to escape detec-
tion during different steps of verification/validation procedure,
Trojans are designed in such a way that only a very rare
set of input sequences can trigger them. In other words,
Trojans are dormant during the normal execution, and ac-
tivated under unusual (rare) conditions. Therefore, a smart
adversary is likely to insert Trojans in RTL designs under rare
branches which may reside in the unspecified functionality of
the design. Otherwise, traditional simulation-based techniques
using random or constrained-random tests can detect them,
and the attacker’s attempt would fail. We have also considered
rare continuous/concurrent assignments in our threat model.
These are assignments that may not be under any branches.
Therefore, there is a high chance that they are not covered by
targeting rare branch coverage. We transform rare assignments
to branches without changing the functionality of the design
in order to generate tests to cover them. Therefore, our threat
model boils down to covering only rare branches including

both original and newly created ones (due to the conversion
of rare assignments to branches).
Example 1: Suppose that an RTL IP contains an assign-
ment statement which is as follows: assign Tj Trig =
count 1 & count 2. Assuming Tj Trig is the trigger
signal of the hidden Trojan and it becomes true when both
count 1 and count 2 overflow at the same time. Signal
Tj Trig becomes rare for value ‘1’ if two of the counters
are large enough. In order to consider such rare assignments
in the test generation phase, we convert the assignment to a
conditional statement as follows.

Listing 1. Converting an assign statement to a conditional statement.
i f ( coun t 1 & coun t 2 )

T j T r i g <= 1 ;
e l s e

T j T r i g <= 0 ;

In this paper, we aim to activate the Trojans that change
the functionality (e.g., causing information leakage or denial
of service) and they can be triggered internally or externally.
There may be cases when the Trojan’s trigger is dependent
on several rare branches. However, the trigger should be used
somewhere in the design to activate the malicious functional-
ity. Since the trigger value is rare, the branches/assignments
that use the trigger would be rare to be activated, consequently.
Therefore, by covering all of the rare branches and assign-
ments, we can activate hidden Trojans in RTL designs.

While we use rare branches and rare assignments as our
threat model in this paper, our approach can easily incorporate
suspicious nodes marked by other methods such as Transition
Probability Calculator (TPC) [20], FANCI [9], VeriTrust [10]
as well as score-based classification methods [19] to perform
our Trojan detection analysis. Moreover, while this paper
uses Verilog examples, our approach is equally applicable on
VHDL designs.

V. TEST GENERATION FOR TROJAN ACTIVATION

Figure 5 shows the overview of our proposed approach.
It consists of three major steps: i) design instrumentation,

Paper 6.1 INTERNATIONAL TEST CONFERENCE 4



Specification Design Fabrication Testing Packaging

Design House

Verification

Untrusted 
IP Vendors

Trusted EDA 
Vendors

Untrusted 
EDA Vendors

Trusted IP 
Vendors

In-house 
designers

SoC 
Integrator

Fig. 4. Adversarial threat model for our proposed approach. Attacker can
be an untrusted third-party IP vendor, untrusted EDA tool vendor, rogue in-
house designer or SoC integrator itself. In our threat model, verification team
is responsible for defending against attacks.

ii) obtaining security targets of the design based on the
identification of the rare branches and assignments, and iii)
directed test generation to activate the security targets. The
remainder of this section describes these steps in detail.

A. Design Instrumentation

Design instrumentation is needed to trace the execution
paths during simulation of the design. Instrumentation is
done by inserting a $display statement for each functional
statement. This insertion is automated and done during the
abstract syntax tree (AST) generation phase of the simulator.
Note that the instrumentation will not change the functionality
of the design, since it only traces the executed statements.
This trace is later used to identify rare branches as well as to
generate path constraints for symbolic execution. The design
needs to be instrumented only once.

Fig. 5. Proposed hardware Trojan activation framework consists of three
main tasks: i) design instrumentation, ii) finding suspicious branches and
assignments, and iii) test generation for Trojan detection.

Example 2: Listing 2 shows the instrumented version of
Trojan circuit in AES-T1000 benchmark [20] where “c” shows
the current clock cycle (display statements are added). The
Trojan is triggered when state variable becomes a particular
value from 2128 possible values (state = specific value)2.

Listing 2. Instrumented version of a part of the code in AES-T1000
benchmark [20]
always @( r s t , s t a t e )

begin
i f ( r s t ==1) begin

$ d i s p l a y ( ” r s t ==1 , c ” ) ;
T j T r i g <= 0 ;
$ d i s p l a y ( ” T j T r i g ==0 , c+1” ) ;

end
e l s e i f ( s t a t e == s p e c i f i c v a l u e )
begin

$ d i s p l a y ( ” s t a t e == s p e c i f i c v a l u e , c ” ) ;
T j T r i g <= 1 ;
$ d i s p l a y ( ” T j T r i g ==1 , c+1” ) ;

end
end

B. Identification of Suspicious Branches

Random simulation is utilized to find rare branches which
can potentially host hardware Trojans. We simulate the in-
strumented design using random inputs. Next, the number of
times each branch is covered is counted. The branches that
are covered less than a threshold number of times are marked
as suspicious branches. For example, having a threshold of
zero implies only uncovered branches as suspicious. In our
experiments, we have used a threshold of zero. It gives the
lowest probability of false positive. All the branches that fall
within the threshold are considered as security targets for the
proposed Trojan activation framework. Using random testing
is not only useful to mark rare branches, but it is also beneficial
to reveal existing bugs in the design. Moreover, if an attacker
does not insert a Trojan smartly, there is a high chance that the
Trojan may be activated during random testing. As mentioned
before, other methods of detecting suspicious branches are
equally applicable.
Example 3: Consider the Trojan circuit shown in Listing 2, the
Trj Trig signal remains zero most of the time. However, when
the state input gets the rare value shown in line 9, the Trj Trig
signal is activated. The chance of the branch shown in line
9 being covered during random test simulation is extremely
low (probability of 1/2128) and most likely it will not be
covered. Therefore, our method marks this branch as a rare
branch (security target).

After identifying rare branches, we model conditions of each
rare branch as a security target such that the branch will be
taken if the conditions are evaluated true. The security targets
are used by our test generation framework to produce the input

2specific value = 128′h00112233 44556677 8899aabb ccddeeff
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conditions (directed tests) to activate the respective rare branch
in order to make sure that no Trojan or malfunction resides
inside those rare branches.

Algorithm 1 Security Targets Identification
1: Input: Design under test DUT, Threshold π
2: Output: Set of security targets
3: Security target set, P = {}
4: Instrumented design, DUT ′ = instrument(DUT)
5: Input vector I = random()
6: Path trace Φ = simulate(DUT ′, I)
7: B = identifyRareBranches(DUT ′, Φ, π)
8: A = identifyRareAssignments(DUT ′, Φ, π)
9: for each a ∈ A do

10: B = B ∪ createEquivalentBranch(a)
11: end for
12: for each b ∈ B do
13: P = createSecurityTarget(b)
14: P = P ∪ P
15: end for
16: return P

Algorithm 1 shows the procedure to mark security targets.
The algorithm takes the design under test (DUT) as well as
threshold π and it produces a set of security targets P as
output. To trace the execution path, the design is instrumented
(line 4). Then, the design is simulated using random input
vectors and simulation traces are stored in Φ (lines 5-6). After
collecting the simulation trace, branches that are not covered
more than threshold times are marked as rare branch (line
7). Subsequently, these branches are added to set B. Note
that for each branch b, two conditions are considered: i) b is
taken, and ii) b is not-taken. For example, consider the branch
if(var == 1). If the value of var was always 1 during the
random simulation, then only taken condition for this branch
is covered. We have to add the not-taken condition to set B
as not covered. The same procedure is applied for identifying
the rare assignments (line 8). Each rare assignment a is then
converted to an equivalent branch and added to set B (lines
9-11). Finally, each element in B is converted to an assertion,
and it is added to the output set P (lines 12-15).
Example 4: Consider the Trojan circuit shown in Listing 2.
The branch shown in line 7, if (state == specific value)
has not been covered during random simulation, and thus
it is marked as a rare branch. Therefore property assert
eventually state = specific value is added to the design for
security validation. Similarly in Listing 1, since the condition
(count 1 == 1 & count 2 == 1) is a rare event, we create
a security target as:
assert eventually count 1 == 1 & count 2 == 1.

C. Coverage Guided Test Generation for Trojan Activation

Algorithm 2 takes an RTL design as well as security targets
as inputs and generates directed tests to cover the security
targets. First, we perform a preprocessing step to reduce the
total number of security targets. The number of security targets

Algorithm 2 Test Generation for Trojan Activation
1: Input: Instrumented design under test DUT ′, Security

targets P
2: Output: Set of test vectors T
3: T = {}
4: P′ = pruneOverlappingTargets(P)
5: Input vector I = random()
6: while I is not null do
7: T = T ∪ I
8: Path Trace φ = simulate(DUT ′, I)
9: for each P ∈ P′ and isCovered(P, φ) do

10: P′.remove(P )
11: end for
12: if P is empty then
13: Return T . All security targets are covered
14: end if
15: C = findConstraints(DUT ′, φ)
16: for all uncovered branches C do
17: b = branchWithLeastDistanceFromTarget(C, p)
18: bn = ¬b
19: I = satisfy(C + bn)
20: if I! = null then
21: break . To execute new input
22: end if
23: end for
24: end while
25: return T

has a direct impact on the performance of the test generation
approach. The number of targets can be reduced based on the
dependency between them due to the fact that all branches
within a rare branch are also rare. Covering the inside branch
will also cover the parent branch, and thus it can be removed
from the target list. Such dependency can be resolved by
looking at the control flow graph (CFG) of the design. If
a target is dominator of any other target, it can be pruned.
An example is shown in Figure 6. Here (a) shows the initial
targets as B, D, and E. However, B is a dominator of target
D, hence can be removed. This is done statically, without
unrolling the design for multiple cycles. The static analysis
only prunes part of the dependent branches. Dynamic pruning
with actual unrolling of design would result in more pruned
targets, but we do not use it in this work since it is susceptible
to state explosion.

After pruning step (line 4), one of the targets is selected
for test generation. Distance from the target is then evaluated
by running breadth-first search (BFS) starting from the target
branch, and following predecessor edges in the CFG. An
example is shown in Figure 6(d). Here, D is selected to be cov-
ered first. Initially, target D is assigned distance 0 and all other
branches are assigned infinity. Next, we run BFS starting from
D, and follow predecessor edge. After distance evaluation is
finished, the distance would be: B = 1, A = 2 and others
infinity. This procedure is also done statically without actually
unrolling the design. Next, we apply concrete simulation

Paper 6.1 INTERNATIONAL TEST CONFERENCE 6



Fig. 6. Overview of test generation procedure. Targets are shaded. (a) Initial
targets. (b) Targets after pruning. (c), (d) Selects one target, and evaluates
distance for that target. (e) Runs concrete simulation. Execution path is marked
as red (solid line). (f) Selects an alternate branch and symbolically solves for
input.

followed by symbolic execution for several iterations in order
to generate tests to activate the potential hardware Trojan.
In each iteration, the instrumented design is simulated for a
specific number of clock cycles (i.e., unroll cycles) and a trace
file is produced (Figure 6(e)). The information of the trace
file is then converted into path constraints (line 15). These
constraints model the execution path taken by the concrete
simulation. In the next step, one of the alternate branches is
selected to be explored. We have selected the branch which
has lowest assigned distance value (line 17). In other words,
we have given priority to the branches that are closer to
our security target. Path constraints that lead to that branch
is then symbolically solved by a constraint solver (line 19).
If a solution exists, then we again do concrete simulation
with that solution, this time forcing execution through that
alternate branch. This concrete and symbolic execution steps
are repeated until the target is covered (Figure 6(e)-(f)), or
some terminating conditions are met (e.g., timeout). If all of
the branches are exhausted and no new input vector I can be
generated, algorithm returns generated tests (line 25).

Intuitively, our iterative procedure effectively guides the
execution path towards the target. Our approach avoids the
state space explosion by examining one path at a time in
contrast to traditional formal methods that consider all of the
paths simultaneously. Therefore, it is capable of activating
hard-to-detect Trojans in large designs, as will be demonstrated
in the experiments section.
Example 5: Consider the instrumented code in Listing 2. The
concolic testing generates a test vector to activate the rare
branch (line 7) where rst = 0 and state = specific value.
This input vector makes Tj Trig true, and therefore, activates
the Trojan.

VI. EXPERIMENTS

A. Experimental Setup

Experiments are performed using a 64-bit Red Hat Enter-
prise Linux server machine with Core-i5 3427U CPU and
16GB of RAM. The CPU has two cores running at 1.80GHz.
Our hardware Trojan detection framework is implemented

TABLE I
CHARACTERISTICS OF TROJAN INSERTED BENCHMARKS USED FOR

EXPERIMENTS. THESE FUNCTIONAL TROJANS WERE INSERTED IN RTL
MODELS DURING THE DESIGN PHASE.

Benchmark Activation Mechanism Effect Location

wb conmax-T200 Condition Based Change Functionality I/O

wb conmax-T300 Condition Based Change Functionality I/O

AES-T500 Time Based Denial of Service Processor

AES-T1000 Time Based Leak Information Processor

AES-T1100 Time Based Leak Information Processor

AES-T1300 Time Based Leak Information Processor

AES-T2000 Time Based Leak Information Processor

RS232-T100 Condition Based Denial of Service N/A

RS232-T200 Condition Based Denial of Service N/A

RS232-T400 Condition Based Denial of Service N/A

RS232-T800 Condition Based Denial of Service N/A

memctrl-T100 User Input
Degrade Performance

Denial of Service
Memory

cb aes xx User Input Leak Information N/A

using Icarus Verilog Target API [58]. Icarus Verilog is also
used for parsing and simulating the RTL design. Yices is used
as the constraint solver [59]. Our approach is independent of
the constraint solver, so other popular solvers such as Z3 [60],
Boolector [61], etc. can also be used. EBMC model checker
is used to perform property-based test generation [62], [63].
Our Trojan detection framework is tested with Trojan inserted
designs from Trust-Hub benchmark suite [20]. Table I shows
the benchmark characteristics. The selected benchmarks cover
a wide range of hardware Trojans from the taxonomy given in
Figure 3. Some additional custom designed benchmarks are
used to demonstrate the scalability of our method. Security
targets here are the rare branches. Rare branches are selected
by simulating the design with random inputs for one million
cycles. A branch is considered rare if it is not covered during
the simulation.

B. Results

In this section, we show the efficiency of our framework
to generate test vectors to activate the hidden Trojans. We
compare our approach with bounded model checking tool
EBMC [62], [63]. The model checker takes the design and
the negation of the security targets and converts these to a set
of conjunctive normal form (CNF) clauses. Then it uses a SAT
solver to generate counterexamples. However, when the num-
ber of CNF clauses exceeds a threshold (e.g., about 30 million
clauses), SAT solvers as well as BMC fail. To overcome the
state explosion problem of BMC, we use concolic testing to
generate tests to activate hard-to-detect hardware Trojans. Note
that there are no existing approaches for rare branch activation
using model checking for Trojan detection in RTL models. We
provided these results to demonstrate the limited applicability
of state-of-the-art formal methods on large designs. This also
highlights the fact that our threat model and security targets
can be utilized by existing approaches.
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TABLE II
THE REQUIRED TIME AND MEMORY TO GENERATE DIRECTED TESTS THAT ACTIVATE THE TROJAN USING EBMC AS WELL AS OUR APPROACH IN RTL

TRUST-HUB BENCHMARKS. MO = MEMORY OUT OF 16 GB.

Benchmark
Cycles

Unrolled
Lines

of Code1
#Rare

Branches
Rare

Branches
Coverage

EBMC [63] Our Approach Time
Improvement

Memory
ImprovementTime

(sec)
Memory

(MB)
Time
(sec)

Mem
(MB)

wb conmax-T200 10 63 k 1 100.00% 8.71 659.5 13.36 124.7 -1.53x 5.29x

wb conmax-T300 10 63 k 1 100.00% 11.77 1198.9 11.06 118.8 1.06x 10.09x

AES-T500 10 455 k 5 100.00% 67.07 7436 11.67 599 5.74x 12.41x

AES-T1000 10 456 k 2 100.00% 68.37 7441 3.88 525 17.62x 14.17x

AES-T1100 10 544 k 5 100.00% 71.03 7449 11.8 601 6.01x 12.39x

AES-T1300 10 456 k 9 100.00% 68.57 7449 2.65 524 25.87x 14.21x

AES-T2000 10 456 k 6 83.33% 69.27 7554 6.75 600 10.26x 12.59x

cb aes 01 5 33 k 1 100.00% 1.27 179.4 0.51 55.3 2.49x 3.24x

cb aes 05 10 167 k 1 100.00% 11.47 1450.3 4.03 244.3 2.84x 5.93x

cb aes 10 15 334 k 1 100.00% 33.17 4130.6 14.47 502.4 2.29x 8.22x

cb aes 15 20 501 k 1 100.00% 70.78 8041.2 32.14 778.2 2.20x 10.33x

cb aes 20 25 668 k 1 100.00% 110.13 13202.8 86.03 1085.5 1.28x 12.16x

cb aes 25 30 886 k 1 100.00% - MO 150.54 1405.3 - -

cb aes 30 35 1003 k 1 100.00% - MO 243.02 1780.3 - -

cb aes 35 40 1169 k 1 100.00% - MO 371.23 2112.7 - -

cb aes 40 45 1693 k 1 100.00% - MO 851.25 2532 - -
1After hierarchy flattening.

Table II presents the results of Trojan detection using our
approach on Trust-hub as well as specific custom benchmarks.
The first and second columns show the type of the benchmark
and the number of unrolled clock cycles, respectively. For each
design, the unrolled cycle is incremented in steps until the
targets are reachable. The third column shows the size of the
code after hierarchy flattening. This gives an estimation of
the complexity (size) of the benchmark. The fourth column
shows the number of rare branches (i.e., security targets) that
are used for Trojan detection. The fifth column indicates the
coverage of rare branches using our approach. The sixth and
eighth columns present the required time for Trojan activation
using EBMC model checker and our approach, respectively.
The seventh and ninth columns show the required memory to
generate the test to activate the Trojan using EBMC and our
approach, respectively. The last two columns demonstrate the
improvement over EBMC on the required time and memory.

For large Trust-Hub benchmarks, our approach provides
significantly (an order-of-magnitude) better runtime as well as
memory results compared to EBMC. In addition to Trust-Hub
benchmarks, few custom benchmarks are used to demonstrate
the scalability of our approach. The benchmarks are named as
cb aes xx. These are modified versions of AES benchmarks
built by cascading xx number of rounds. The Trojan trigger
depends on the output of the last round, so by controlling
the number of rounds, xx, we can effectively control the
complexity of these benchmarks. As the output depends on
last round, these custom benchmarks need to be unrolled for at

least xx number of cycles. As shown in Table II, the bounded
model checking tool EBMC fails to generate a test case due
to state space explosion (out-of-memory error). EBMC failed
after the cb aes 25 (approximately 0.9 million lines of code)
while our approach worked even with cb aes 40 (more than
1.6 million lines of code). This shows that the proposed
approach can scale with design size, especially in terms of
memory consumption.

Figure 7 and 8 show the effect of increasing unroll cy-
cles keeping the design complexity constant. We have used
cb aes 10 benchmark for this comparison. The unroll cycle
is increased from 15 to 40 while keeping the round number
fixed to 10. In case of our approach, the time and memory
requirement show very little increase with unroll cycles. On
the other hand, it increases rapidly for EBMC, reaching over
10GB with unroll cycle of 40. This experiment demonstrates
that even for the same design size, our approach scales better
with unroll cycles. Overall, our approach is scalable both in
terms of design complexity and unroll cycles. This is expected
because model checkers try to explore the whole search space
at the same time, whereas our approach tries to explore only
one execution path at a time.

Our results demonstrate that effective interleaving of con-
crete and symbolic execution leads to a scalable approach for
the automated generation of directed tests to activate hard-to-
detect Trojans in large RTL designs. The results show that the
run time of our approach is comparable to model checking
for small designs, but an order-of-magnitude faster for large
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Fig. 7. Test generation time to activate the Trojan in cb aes 10 benchmark
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Fig. 8. Memory requirement to activate the Trojan in cb aes 10 benchmark
with different unroll cycles.

designs. Moreover, the memory usage of our approach is an
order-of-magnitude better than model checkers. As a result,
our approach can generate efficient tests to detect hidden
Trojans when state-of-the-art approaches fail.

VII. CONCLUSION

In this paper, we presented an automated and scalable
approach to activate hard-to-detect hardware Trojans in RTL
designs. The first step in our detection methodology involves
marking branches and assignments which are likely to contain
Trojans. We proposed a threat model involving rare branches
and rare assignments. Security targets are then automatically
generated based on the threat model. Our approach can ef-
fectively utilize interleaved concrete simulation and symbolic
execution to generate directed tests by covering security targets
to detect potential hardware Trojan in the design. Our experi-
mental results demonstrated that our test generation technique
is scalable and effective for detecting Trojans in large RTL IPs
when state-of-the-art methods fail. Our approach can be easily
integrated into existing design flows and it can be applied
on any RTL designs with single or multiple clock domains.
Moreover, the proposed method can detect a wide variety of
combinational and sequential Trojans in modern IP cores.
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