

Effective Combination of Algebraic Techniques and Decision Diagrams to Formally Verify
Large Arithmetic Circuits

Farimah Farahmandi, Bijan Alizadeh, Zain Navabi

School of Electrical and Computer Engineering, University of Tehran
{f.farahmandi, b.alizadeh, navabi}@ut.ac.ir

Abstract – Arithmetic circuits require a verification process to
prove that the gate level circuit is functionally equivalent to a high
level specification. This paper presents an automatic equivalence
checking technique to verify combinational arithmetic circuits at
bit level. In order to efficiently verify gate level arithmetic circuits,
we make use of computer algebra based approach so that the
circuit and the specification are modeled in polynomial system and
the verification problem is formulated as polynomial reduction
techniques using Groebner basis of circuit polynomial
corresponding ideal. To overcome costly Groebner basis
computation as well as intensive polynomial reduction, we make
use of a canonical decision diagram named Horner Expansion
Diagram (HED), derive a suitable term order to represent and
manipulate polynomials efficiently and find repetitive components
based on automata. To evaluate the effectiveness of our verification
technique, we have applied it to very large arithmetic circuits
including multipliers. Preliminary experimental results show that
the proposed verification technique is scalable enough so that large
multipliers can efficiently be verified in reasonable run time and
memory usage.

I. INTRODUCTION
Effort for verification of digital system designs grows as their

size and complexity increase. In many practical designs such as
Digital Signal Processing (DSP) for multimedia applications,
arithmetic circuits are the main part of their datapaths. So
verification of arithmetic circuits in a fast and precise way plays
an important role in a digital system design flow. Several
methods have been proposed to check an arithmetic circuit
against its specification at a higher level of abstraction. Most of
them are based on canonical graph-based representations like
Binary Decision Diagrams (BDDs) that are not scalable because
they suffer from space and time explosion problems when
dealing with large arithmetic circuits especially multipliers
[16][17].

On the other hand, recently some techniques to verification of
bit-level implementations using theory of Groebner basis have
been proposed [6][8][9]. However, these techniques are
computationally intensive and are not scalable to large
arithmetic circuits.

Addressing the above problems, this paper proposes a formal
verification technique which combines Groebner basis and
decision diagrams to effectively verify large arithmetic circuits.
Fig. 1 shows our proposed verification technique which takes a
gate level circuit and its high level specification as inputs and
automatically checks whether the implementation is functionally
equivalent to the specification or not. For doing so, first of all,
the gate level circuit is converted to Boolean polynomials by
looking for repetitive components like cascaded XORs, carry
generation logics and so on. In Section V, we will discuss how
to find such repetitive components based on automata. Then the
specification is described as a polynomial function and finally
the equivalence checking is performed by polynomial
manipulation and reduction based on Groebner basis [10].

As will be discussed in Section III, to check whether a given
polynomial is a member of a polynomial system or not, a

sequence of polynomial manipulations including polynomial
divisions and multiplications are needed which makes such a
processing complicated in terms of the run time and memory
requirement. In order to overcome intensive polynomial
reduction and Groebner basis computation, we make use of a
canonical decision diagram called Horner Expansion Diagram
(HED) [14] and also derive a topological order for polynomials'
terms as discussed in Section V. This way, we will be able to
verify large arithmetic circuits in reasonable run time and
memory usage as experimentally shown in Section VI.

Gate level
Implementation

High level
Specification

Equivalence checking

Looking for repetitive
components

Groebner Basis
Computation

Polynomial of
Specification

Cascaded Xors
Carry Logics
or other gates

Representing by
HED

Representing by
HED

Using Membership Testing
by Groebner Basis and HED

Polynomial System

Using a Topological
Order

Fig. 1. Proposed verification technique.

In summary, our contributions in this work are as follows:
� Extracting a finite set of Boolean polynomials from the gate

level implementation by looking for repetitive components.
In contrast to [18][19][20], this method is applicable even
when half adders and full adders cannot be extracted due to
the local optimizations (Section V).

� Determining a suitable variable ordering in such a way that
leading terms of the original polynomials become relatively
prime to avoid Groebner basis computation (Sections III
and V).

� Using a decision diagram, i.e., HED, to perform polynomial
reduction efficiently so that a sequence of polynomial
divisions and multiplications can be efficiently computed
(Section V).

� Showing empirical results to prove that our proposed
verification technique enables us to verify very large
industrial arithmetic circuits within practical time.

The paper is organized as follows: Section II provides a brief
review of related work. In Section III we briefly describe some
mathematical background. Section IV presents our proposed
verification technique in more details. This paper ends with the
experimental results in Section V and the conclusion in Section

II. RELATED WORK

There is a large amount of literature on equivalence
verification of arithmetic circuits against their specifications. In
the literature of graph-based canonical representation, the

2014 IEEE Computer Society Annual Symposium on VLSI

Unrecognized Copyright Information

DOI 10.1109/ISVLSI.2014.109

338

2014 IEEE Computer Society Annual Symposium on VLSI

978-1-4799-3765-3/14 $31.00 © 2014 IEEE

DOI 10.1109/ISVLSI.2014.109

338

ordered Binary Decision Diagrams (BDDs) based verification
techniques have been successfully used to verify small-sized
arithmetic circuits [2]. However, they are not able to deal with
large arithmetic circuits especially multipliers due to the
existence of many varieties of different architectures as well as
the lack of compact bit-level canonical representation. Word
level extensions of BDDs like *BMDs [3] and TEDs [4]
represent arithmetic circuits in more efficient ways but they
need word level information of circuits which are not available
at the gate level of abstraction.

Another approach in verifying arithmetic circuits is to extract
arithmetic operations like half-adders (HAs) and full-adders
(FAs) from gate-level implementation and then generate an
arithmetic model called Arithmetic Bit Level (ABL) to be
compared with the higher-level description [18]. This technique
needs an exhaustive process to check different XOR tree
structures to verify carry signals, which becomes exponential in
terms of run-time complexity. The verification approach
presented in [19] utilizes a more efficient reverse-engineering
process in extracting a network of half-adders from the gate
level implementation. This approach uses a bit level adder
(BLA) representation during the adder-extraction process. The
BLA model is robust for several arithmetic circuit architectures.
However, this method cannot handle pin-swap optimizations,
related to the cases where partial product bits can be swapped
with each other without changing the functionality of the circuit.
The debugging algorithm in [20] is a much more efficient
approach, which solves almost all of the above-mentioned
problems.

Several methods based on computer symbolic algebra are
taken into account for verification of arithmetic circuits as well.
In [5][6], arithmetic circuits are described with weighted
number systems so arithmetic formula and equivalence checking
can be performed by formula manipulations based on Groebner
basis. This technique requires hierarchical information of circuit
which is often unavailable. Symbolic algebra methods also have
been used for verification of arithmetic circuits over finite rings
[21]. This method checks the difference between two
polynomial expressions by utilizing "vanishing polynomial"
theory which actually limits its applicability to verification of
arithmetic circuits due to using a word level representation of
the datapaths.

The authors of [13] have presented a formal approach to
model and verify multiplier circuits over Galois fields F2

k using
a computer algebra based technique. They have shown how to
model Galois field multipliers as a polynomial system in F2

k.
They have also shown how to formulate the verification
problem as a membership test in a corresponding ideal. In order
to overcome the cost of Buchberger's algorithm [7], they have
analyzed the circuit topology and derived a suitable term order
to represent polynomials. This approach, however, is not
applicable to integer multipliers due to carry propagation issues.

The authors of [8] have proposed a formal verification
technique in which ABL components [18] are modeled by
polynomials over unique ring and their normal forms are
computed with respect to the Groebner basis over rings Z2

k
using computer algebra techniques. In order to overcome the
expensive Groebner basis computation problem, the same
authors have proposed a technique to directly generate
individual output polynomials in terms of primary inputs [7].
However, there is no systematic way for comparing such
polynomials against the specification and preprocessing of such

very large polynomials is crucial for successful performance of
the normal form algorithm. In [11] and [9], arithmetic circuits
are represented as a network of half adders, full adders, and
inverters and modeled as a system of linear equations.
Functional correctness of the gate level implementation is
proved by computing its algebraic signature using standard
linear programming solvers and comparing it with the reference
signature provided by the designer. It should be noted that if
half adders and full adders could not be extracted due to
optimizations done by synthesis tools, such a technique would
not be applicable.

III. ALGEBRAIC PRELIMINARIES
In this section, we briefly describe Groebner basis concepts.

These mathematical backgrounds are mostly based on [10]. Let
m = n

nxxx ��� ...21
21 be a monomial in nxxx ,...,, 21 where all of

the exponents n��� ,...,, 21 and variables are nonnegative
integers. Let K be a computable field and K[��, ��, … , ��] be the
polynomial ring in n variables so that its elements restricted to 0
and 1. A finite linear combination of monomials in ��, ��, … , ��
is a polynomial f. Let ��, ��, … , �� be polynomials in K
[��, ��, … , ��].Then
 < ��, ��, … , �� >={ ∑ ℎ
�

�

�� : ℎ�, ℎ�, … , ℎ� ∈ K [��, ��, … , ��]}

is an ideal I. So the finite set of polynomials F = {��, ��, … , ��}
is called generator or basis of ideal I.

It has been shown in [12] that every arbitrary ideal other than
{0} has a basis with specific properties which is called Groebner
basis. Groebner basis enables us to solve ideal membership
problem. To describe Groebner basis, first we need to cover
some basic definitions.
Definition 3.1: Let f = �

�
� Xa� be a nonzero polynomial in K

[��, ��, … , ��] and > be a monomial order.
i. LM (f) is the leading monomial (the largest monomial)

of f with respect to >.
ii. LC (f) is the leading coefficient of f with respect to >.

iii. LT (f) is the leading term of f with respect to >. The
initial term of f is LT (f) = LM (f) . LC (f).

Definition 3.2: Let f, g and t be polynomials in
K [��, ��, … , ��]. We say that g ≠ 0 is reducible to t by f if there
is a term M which can be divided by LM (f) in g and
 = � −

� . �

��(�). ��(�)
 �. Where coefficient of M is c. It is denoted by �

�
→

.Let F be a polynomial set in K [��, ��, … , ��], we say g is
reducible to h with respect to F if there is a sequence of
polynomials ��, ��, … , �� ∈ � that

��
→

��
→ …

��
→ ℎ . We can also

represent it by �
�
→ ℎ. If we cannot reduce h with respect to F

anymore, we say h is normal form of g.
Definition 3.3: Let � ⊂ K [��, ��, … , ��]be an ideal other than
{0}. The ideal of leading terms generated by the elements of
LT (I) is denoted as <LT (I)> where
��(�) = {��!:
ℎ"# "�$%
% � ∈ � &$
ℎ ��(�) = ��!} .
Definition 3.4: The set G of ideal I is a Groebner basis if and
only if for all polynomial f ∈ � the remainder of reducing f by
polynomials of G is zero. This process is called membership
testing of f over ideal I and denoted by ∀� ∈ �, �

*
→ 0.

 To compute Groebner basis over a field, Buchberger’s
algorithm in Fig. 2 is used. It makes use of a polynomial
reduction technique named S-polynomial as defined below.

339339

Definition 3.5: V(I) is the affine variety of ideal I such that

+(�) = {(-�, -�, . . , -�)| �((-�, -�, . . , -�) = 0 �/# -11 � ∈ �}
where-
 ∈ 2.For every generating set of ideal I such as Groebner
basis G, we have V(I)= V(G).

Definition 3.6: Polynomial f is member of ideal I if it vanishes on V(I
) or+(�) ⊂ +(�).

In order to find out whether polynomial f is member of ideal I or not,
we need to check the possibility of vanishing f on V (I). Regarding to
definition 3.7, if set G is Groebner basis of ideal I, V(I) is equal to
V(G). So for the membership testing, we need to compute Groebner
basis.

Definition 3.7 (S-polynomial): Let �, � ∈ K [��, ��, … , ��] be
nonzero polynomials. The S-polynomial of f and g is defined as
Spoly (f, g) = 345635(�),35(7)8

�9(�)
. � − 345635(�),35(7)8

�9(7)
. �.

Where LCM(a, b) is a notation for the least common multiple of
a and b).
Example 3.1: Let � = 6 ��

?��
@ + 24��

� − �� and � = 2��
���

D +
4��

E + 2�E and we have �� > �� > �E . The S-polynomial of f
and g is defined below as �FG (��

?��
@, ��

���
D) is equal to ��

?��
D.

Spoly (f, g) = H�
IH�

J

L H�
IH�

M . � − H�
IH�

J

�H�
�H�

J . � = 4��
���

� − �

L
 ��

E − 2��
���

E −

 ��
��E
It is obvious that S-polynomial computation cancels leading

terms of the polynomials.

Fig. 2. Buchberger’s Algorithm.

As shown in Fig. 2, Buchberger’s algorithm first calculates
all S-polynomials (lines 4-6 of Fig. 2) and then add non-zero S-
polynomials to the basis G (line 8). This process repeats until all
of the computed S-polynomials become zero with respect to G.
It is obvious that Groebner basis can be extremely large so its
computation may take a long time and it may need large storage
requirement as well. The time and space complexity of this
algorithm are exponential in terms of the sum of the total degree
of polynomials in F, plus the sum of the lengths of the
polynomials in F [10]. So it implies that when the size of F
increases, the verification process may be very slow or in the
worst-case may be infeasible.

IV. PROPOSED VERIFICATION APPROACH

Formally, the verification problem of an arithmetic circuit is
characterized by a given specification fspec := (Y – ∑ N

 × O
 +
F
) whereN = -P + 2-� + ⋯ + 2RT�-RT�, O = UP + 2U� +
⋯ + 2�T�URT� and F = �P + 2�� + ⋯ + 2RT��RT�and
V = WP + 2W� + ⋯ + 2XT�WXT� where ai, bi, yi ϵ {0, 1}. We are
also given a gate level circuit with {a0, …, am-1} , {b0, …, bm-1}
and {c0, …, cm-1} as the primary inputs and {y0, …, yt-1} as the
primary outputs.

To check the equivalence between the polynomial
specification (fspec) and the gate level implementation, we model
the gate level circuit with a series of polynomials. Each
polynomial models the operation of correspondence gate as
shown below:

Y = Z\�(-) => � = Y − (1 − -)
Y = NZ_(-, U) => � = Y − -. U

Y = \`(-, U) => � = Y − (- + U − -. U)
Y = a\`(-, U) => � = Y − (- + U − 2. -. U)

 We denote these polynomials as {f1, …, fs} over K[x1, …,
xn]. The specification polynomial is also considered as fspec ϵ
K[x1, …, xn]. The generated Ideal I = <f1, …, fs> is taken into
account and therefore verification test can become a
membership test of fspec over ideal I. To check whether fspec is a
member of ideal I, its Groebner Basis needs to be computed.

Please keep in mind that the most time consuming task in
Buchberger’s algorithm is the reduction of the S-polynomials
modulo G. A simple idea to speed up such computations is to
reduce the number of S-polynomials to be computed. On the
other hand, it is obvious that S-polynomial of a pair fi and fj
whose leading power products are relatively prime, can be
ignored. In other words, if LCM(LM(fi),LM(fj)) =
LM(fi)�LM(fj) then Spoly(fi, fj) *

→ 0. This criterion is indicating
that on those cases where the leading monomials of f and g are
relatively prime, Spoly(f, g) is always reduced to 0. Thus
Buchberger’s algorithm does not need to consider Spoly(f, g).
Therefore analyzing and deriving a suitable term order from the
given circuit can be quite useful, because it causes every
polynomial pair (f, g) in the generating set has relatively prime
leading monomials, then Spoly(f, g)

*b
cd0 for all pairs f and g.

Consequently, the polynomials ��, ��, … , �� extracted from
the circuit (corresponding to ideal I) and represented using such
a term order would itself constitute a Groebner basis of I.
Although such a term order is derived and the very same
concept is proposed in [13], it has been applied only to Galois
field multipliers while in this work we are dealing with integer
arithmetic circuits including integer multipliers.

We derive an order for polynomial terms based on a
topological analysis of the circuit. Since the circuit is acyclic, if
we can represent each gate polynomial such that its output
places in higher order than its inputs, then every two
polynomials have relatively prime leading monomial and
therefore {f1, …, fs} is itself Groebner basis [13]. Note that, in
our case, variables are all binaries, so their degrees never
increase. Another point is the fact that outputs of gates are
represented as individual variables in the set of polynomials.

In order to show how such a term ordering reduces the
computational complexity of Buchberger’s algorithm let us
consider gate level implementation of a two bit multiplier shown
in Fig. 3.

Fig. 3. Gate level implementation of a two bit unsigned multiplier

Input: F=(f1,f2,…,fs), ideal I = <f1,f2,…,fs>�{0}
Output: G = (g1, g2, …, gt) for ideal I
1 G := F;
2 V := G � G;
3 WHILE V � 0
4 FOR each pair (f,g) � V DO
5 V := V - (f,g);
6 Spoly(f,g) �	�G r;
7 IF r � 0 THEN
8 G := G
 {r};
9 V := V
 (G � r);

340340

To make every polynomial pair (f, g) relatively prime, the
following variable ordering is taken into account:

{y3> y2> y1> y0}>{w3> w2}>{ w0> w1}>{ a1> b1> a0> b0}
Polynomials extracted from the specification and the

implementation are described as follows:
��eh� : = 8WE + 4W� + 2W� + WP − (2-� + -P). (2U� + UP)

�P ≔ WP − -P. UP �G(�P) = WP
�� ≔ &P − -�. UP �G(��) = &P
�� ≔ &� − -P. U� �G(��) = &�
�E ≔ &� − -�. U� �G(�E) = &�

�? ≔ W� − (&P + &� − 2&P. &�) �G(�?) = W�
�@ ≔ &E − &P. &� �G(�@) = &E

�L ≔ W� − (&E + &� − 2&E. &�) �G(�L) = W�
�D ≔ WE − &E. &� �G(�D) = WE

After computing Groebner basis {f1, …, fs}, the second step
is to reduce the specification polynomial (fspec) with respect to
{f1, …, fs}. In order to facilitate the reduction process, we can
simultaneously reduce fspec with respect to those polynomials
which have outputs at the same level. Unfortunately, as for
circuits with more inputs, the number of variables in
polynomials increases greatly and therefore specification
reduction over ideal Groebner basis of circuit’s polynomials
becomes impractical and we get timeout for large circuits. Our
idea to alleviate this issue is to partition the circuits into suitable
components which are repeated in the circuit. In the following
subsections we will discuss our idea in more details.

A. How to Extract Repetitive Components
 In order to reduce the numbers of polynomials, we have tried
to extract those components which are being repeated in the
circuit and create only one polynomial for all of the existing
gates in these components. Using this method, the number of
polynomials decreases significantly. Please note that unlike the
technique presented in [8] which looks for HAs and FAs as
repetitive components, we are looking for different forms of
repetitive components including HAs and FAs. This way, if the
proposed verification technique is unable to map a series of
gates to HAs or FAs (due to optimizations), it is still able to
verify the circuit by creating other forms of repetitive
components and therefore the specification reduction over this
set of new polynomials needs to be done.

O
1 2

AA

1
1

1

22

2

vvv

v v v

X

X
1

1
2

2
X1X1v
X1X2v
X2v

O1A1v
O1A2O1v
O1A2O2v
O2A1v
O2A2vO

(a) (b) (c)

t1.1
t1.2
t1.3

t2.1
t2.2
t2.3
t2.4
t2.5

(d)
Fig. 4. Cell library example (a) Components of cell library. (b)

Pattern trees. (c) Pattern strings. (d) Pattern tree identifiers.
To find repetitive components, a tree-based matching

algorithm which utilizes Automata [22] is applied. We define
our components in a cell-library and we use automaton to
represent the cell-library. This approach is based on an encoding
of the trees by strings of characters and on a string recognition
algorithm. This method supports library descriptions in terms of
base functions, each one encoded by a single character. For
applying this method, we consider our circuit as a rooted acyclic

graph which is called subject graph. The graph associated with
library elements are called pattern graphs which are also acyclic
and rooted. We also have corresponding pattern strings and
pattern tree identifiers for each library component as shown in
Fig. 4.

The automaton processes strings that encode paths in the
pattern trees. The automaton consists of a set of states, a set of
transitions that are portioned into "goto" and "failure"
corresponding to the status of detection of a character in a string
and an output function that signals the full detection of a string.
The automaton is constructed once for all elements of a given
library. A part of automaton which detects library elements of
Fig. 4 is shown in Fig. 5.

To find repetitive components, the subject tree is visited in a
bottom up fashion, and for each vertex all strings that are
corresponding to paths to the leaves are processed. A match
exists if the strings are recognized by the automaton as
belonging to the same pattern tree. The algorithm complexity is
linear in the size of the subject graph.

Fig. 5. The matching automaton. The “goto” transitions are

indicated by edges.

Fig. 6 shows a part of a large adder circuit [1]. In this circuit
the signal u computes the sum of signals a, b, c, d and e. This
sum is computed in a tree fashion to minimize delays. Signal v
computes the corresponding carry. As we can see in the figure,
extracting half adders and full adders is a hard task and almost
impossible. However, some repetitive components can be found
by automata based on our cell library which decreases the
number of polynomials significantly.

b

c

d

e
a

b

c

d

a

e

g

h

u

j

a

k

l
v

f1

f2

f3

f4

f5

f6

f

Fig. 6. Finding repetitive components and corresponding

polynomials in an optimized circuit

 By applying this technique to the circuit in Fig. 6, the
number of polynomials is decreased from 14 to 6. The number
of variables is also reduced from 19 to 12. The corresponding
polynomials are as follows:

341341

�� ≔ k − (- + U + ℎ − 2-U − 2-ℎ − 2Uℎ + 4-Uℎ)
�� ∶= ℎ − (� + n + " − 2�" − 2n" − 2n� + 4�n")

�E ≔ q − (- + � − 2-�)
�? ≔ r − (�q + Uq + �U − 2�qU)

�@ ≔ s − (r + 1 − 2r1)
�L ≔ 1 − (-n + "n + -" − 2-"n)

B. Improving Polynomial Reduction Phase Using HED

As mentioned before, final step of verification is reducing
specification polynomials with respect to circuit polynomials
which are Groebner basis. The polynomial reduction of a set is
equal to some sequential polynomial division with respect to a
specified monomial ordering. Considering P as the number of
polynomials, this division should be performed P times. In each
iteration regarding to the top variable of each polynomial, we
need to divide the terms of the polynomial into two sections: the
terms which are independent of top variable and the terms
which are served as the coefficient of top variable. Division is
continued by multiplication of coefficient of top variable into
polynomial which is leading term is equal to the top variable
and subtracting the product from polynomial specification of
that iteration. In each iteration, we also need to simplify
polynomials by eliminating terms with same monomials and
reduce them to one term. So the complexity of the entire
algorithm is really high.

In order to perform such division process efficiently we need
a suitable representation. The HED is a binary graph-based
representation which is able to represent polynomial function by
factorizing variables recursively as shown in (1), where const is
a term which is independent of variable y, while linear is
another term which is served as the coefficient of variable y [15].
F(y,…)=F(y=0,…)+y�[F’(y=0,…)+…]= const + y� linear (1)
Definition 4.1 (HED Representation): HED is a directed acyclic
graph G= (VR, ED) with vertex set VR and edge set ED. While
the vertex set VR consists of two types of vertices: Constant (C)
and Variable (V), the edge set indicates integer values as weight
attribute. A Constant node v has a value val(v)� Z as its
attribute. A Variable node v has three attributes: an integer
variable var(v) and two children const(v) and linear(v) � {V,
C}. Hence, each vertex v in HED denotes an integer function fv
defined recursively as follows:
� If v � C (is a Constant node), then fv = val(v).
� If v � V (is a Variable node), then fv =

const(v)+var(v)*linear(v).
Now suppose we need to compute fspec/fi where the top

variable is x. After representing fspec and fi in HED, we will
have:

fspec = const(fspec) + linear(fspec)*x fi = x - const(fi)
and therefore instead of computing fspec/fi directly, we just

need to consider the following computation:
fspec = const(fspec) - linear (fspec) * const (fi)

Obviously, we can access to constant and linear parts of
polynomial specification w.r.t. a top variable with O(1).

After completion of the reduction, if the reminder is not equal
to 0, it means the design contains errors. Otherwise, the design
has been implemented correctly.

V. EXPERIMENTAL RESULTS
In order to evaluate our proposed arithmetic circuit

verification technique, it has been implemented in C++ and
applied to several arithmetic circuits. In order to generate the
gate level implementation of such circuits, their high level
descriptions are synthesized using commercial synthesis tools.
All experiments were conducted on a 2.4 GHz with Intel Core™
i5 processor and 4GB RAM running Linux.

In the first experiment, we have extracted individual
polynomials for all gates of N�N unsigned multipliers where N
varies from 3 to 128. We have used HED neither for
representing our polynomials nor for reducing the specification
over the polynomials set as a Groebner Basis. Taking this
method into account, we encountered time outs for 64 bits and
more (the time out, TO, is set to 6 hours) as indicated in major
column “without using automata to find repetitive components”
of Table 1. Note that in this table, N, #vars and #polys are the
size of multiplier (both operands are N-bits), the number of
variables and the number of polynomials, respectively. MO
shows lack of memory during of execution. In order to compare
our results with those of BDDs and SMT solvers, we have
converted the polynomial specification into gate-level golden
circuit. Then we have created a miter with the specification and
implementation and check their equivalency. These results are
also shown in minor columns “BDDs” and “Yices” of Table 1.
We have also run Singular as a computer algebra system [23]
and reported the results in minor column “SINGULAR” of
Table 1.
We have improved our method in two ways: 1) by looking for
repetitive components in the circuit in order to reduce the
number of polynomials and 2) using HED representation to have
the reduction process done more efficiently. This way, we were
able to verify large arithmetic circuits in appropriate run time.
To illustrate the effectiveness of the proposed verification
method, we have compared our results with those of Singular.
We have used Singular to compute Groebner basis computation
and polynomial reduction (ideal membership testing). Our
results show that Singular encounters a memory explosion for
up to 4-bit multipliers when it is not able to find repetitive
components. When the number of polynomials is reduced by
using automata, Singular has failed to verify 24-bit multipliers.
The results are shown in major column “with using automata to
find repetitive components” of Table 1. In the second
experiment, we have applied our proposed verification
technique to two complex arithmetic circuits: 1) a*b+c*d (the
results are shown in Table 2) and a*b+c+d+e (the results are
shown in Table 3). As shown in these tables SINGULAR can
only verify the correctness up to 16-bits arithmetic circuits and
the Groebner basis engine encounters a memory explosion while
our method is able to verify 128-bit arithmetic circuits in
reasonable run time. We have performed this experiment to
show that our method is not limited to just some types of
circuits and it can easily be applied to very large arithmetic
circuits. Furthermore, the results in Table 3 indicate that our
verification method is efficient to verify those circuits in which
extracting HAs and FAs can rarely be done.

342342

Table 1. Verification of N�N multipliers with and without using automata and HED
Without using automata to find repetitive components With using automata to find repetitive components

Size
(N)

#vars #polys Without Using HED (sec) SINGULAR
(sec)

BDD
(sec)

Yices
(sec)

#vars #polys Using HED (sec) SINGULAR
(sec)

3 39 33 0.87 2.73 0.09 0.02 15 7 0.00 0.00
4 80 72 1.38 7.42 0.19 0.05 21 13 0.00 0.03
8 384 368 14.16 MO 0.343 2.54 63 47 0.05 3.41
16 1664 1632 110.76 MO MO TO 235 203 0.38 7.19
24 3744 3696 617.82 MO MO TO 521 473 0.79 MO
32 6912 6848 4054.32 MO MO TO 959 895 5.72 MO
64 28160 28032 TO MO MO TO 3004 2876 143.95 MO
96 63360 63168 TO MO MO TO 7931 7739 701.54 MO

128 212862 212606 TO MO MO TO 24751 24495 4965.29 MO

Table 2. Verification of a*b+c*d with using automata and HED
representation

Size (N) #vars #polys CPU time
(sec)

SINGULAR
(sec)

3 35 23 0.00 0.03
4 74 58 0.06 4.52
8 278 246 0.47 7.27

16 1135 1071 6.84 MO
24 3064 2968 149.55 MO
32 7970 7842 706.32 MO
64 23128 22872 4636.03 MO
96 53709 53325 7848.61 MO

128 104023 103511 13707.05 MO

Table 3. Verification of delay optimized circuit of a*b+c+d+e with
using automata and HED representation

Size (N) #vars #polys CPU time
(sec)

SINGULAR
(sec)

3 54 39 0.04 2.60
4 82 62 0.06 4.52
8 215 175 0.33 6.79

16 1028 948 6.05 MO
24 2489 2369 112.58 MO
32 4915 4755 225.97 MO
64 7836 7516 676.42 MO
96 22040 21560 4370.14 MO

128 40917 40277 5928.14 MO

VI. CONCLUSION
In this paper, a formal method for modeling and verifying

arithmetic circuits using a computer algebra based approach has
been proposed. The verification test was formulated as a
membership testing over the ideal generated by polynomials
extracted from the circuit. We analyze the circuit topology and
drive an order that makes polynomial set itself a Groebner basis.
This test can be done by polynomial specification reduction over
Groebner basis. For enhancing our method, instead of
generating polynomials for each gate, we have generated
polynomials for each repetitive component which has
significantly improved the performance. To further improve our
method in terms of the run time and memory usage, we have
represented the polynomials by a graph based representation
called HED.

References
[1] D. Stoffel, and W. Kunz, "Equivalence Checking of Arithmetic Circuits

on the Arithmetic Bit Level", in Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions, 2004, pp.587-597.

[2] R. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” in IEEE Trans. on Computers, August 1986, vol. 35, pp.
677–691.

[3] A. Kuehlmann, M. K. Ganai, and V. Paruthi, “Circuit-based Boolean
reasoning, ” in Proc. Design Automation Conf., June 2001, pp. 232-237.

[4] M. Ciesielski, P. Kalla, and S. Askar, “Taylor Expansion Diagrams: A
Canonical Representation for Verification of Data Flow Designs,” IEEE
Trans. on Computers, vol. 55, no. 9, pp. 1188–1201, Sept. 2006.

[5] Y. Watanabe, N. Homma, T. Aoki, and T. Higuchi, “Application of
Symbolic Computer Algebra to Arithmetic Circuit Verification,” in
Proc. Intl. Conf. on Computer Design, 2007, pp. 25–32.

[6] B. Buchberger. “An Algorithm for Finding a Basis for the Residue Class
Ring of a Zero-dimensional Polynomial Ideal," Ph.D. thesis, Institute of
Mathematics, Univ. Innsbruck, Innsbruck, Austria, 1965.

[7] E. Pavlenko, M. Wedler, D. Stoffel, and W. Kunz, “STABLE: A new
QF-BV SMT Solver for hard Verification Problems combining Boolean
Reasoning with Computer Algebra,” in Proc. Design Automation and
Test in Europe, 2011.

[8] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Greuel, “An
Algebraic Approach for Proving Data Correctness in Arithmetic Data
Paths,” in Proc. Intl. Conf. on Computer-Aided Verification. July 2008,
pp. 473–486, Springer-Verlag Berlin Heidelberg 2008.

[9] M.A. Bastish, T. Ahmad, A.Rossi and M.Ciesielski, “Algebraic
Approach to Arithmetic Design Verification,” in Formal Methods in
Computer-Aided Design (FMCAD), 2011.

[10] D. Cox, J. Little, and D. O'Shea, Ideals, varieties, and algorithms.
Springer New York, 1997.

[11] Q. Tran, M. Vardi, “Groebner bases computation in Boolean rings for
symbolic model checking,” in MOAS'07, 2007, pp. 440-445.

[12] B. Buchberger, “Some properties of Groebner-bases for polynomial
ideals,” ACM SIGSAM Bulletin, vol. 10, no. 4, pp. 19.24, 1976.

[13] J. Lv, P. Kalla and F. Enescu, “Efficient Gröbner Basis reductions for
formal verification of galois field multipliers,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2012, pp. 899-904.

[14] B. Alizadeh, and M. Fujita, “Modular Datapath Optimization and
Verification based on Modular-HED”, IEEE Transactions on Computer-
aided design (TCAD), vol. 29, no. 9, pp. 1422-1435, September 2010.

[15] B. Alizadeh, “A Formal Approach to Debug Polynomial Datapath
Designs ", in ASPDAC, 2012, pp. 683-688.

[16] S. Y. Huang and K. T. Cheng, Formal Equivalence Checking and
Design Debugging, Springer, June 1998.

[17] R.E. Bryant and Y.A. Chen, “Verification of arithmetic circuits with
binary moment diagrams,” in Proc. of the 32nd Design Automation
Conference, San Francisco, pp. 535-541, June 1995.

[18] M. Wedler, D. Stoffel, R. Brinkmann, W. Kunz, “A Normalization
Method for Arithmetic Data-Path Verification,” IEEE Trans. on CAD,
Vol 26, No 11, 2007, pp. 1909-1922.

[19] O. Sarbishei, B. Alizadeh and M. Fujita, “Arithmetic Circuit
Verification without Looking for Internal Equivalences,” in Proc. of
IEEE International Conference on Formal Methods and Models for Co-
Design (MEMOCODE), 2008, pp. 7-16.

[20] O. Sarbishei, M. Tabandeh, B. Alizadeh and M. Fujita, “A Formal
Approach for Debugging Arithmetic Circuits,” IEEE Trans. On CAD,
Vol 28, No 5, May 2009, pp. 742-754

[21] N.Shekhar, P.Kalla and F. Enescu, “Equivalence verification of
Polynomial Datapaths Using Ideal Membership Testing," in IEEE Trans.
On Computers, vol. 55, no. 9, pp. 1188-1201, Sept. 2006.

[22] G. D. Micheli, synthesis and optimization of digital circuits. New York:
McGraw Hill. Inc, 1994.

[23] Greuel, G.-M., Pfister, G., Schönemann, H., 2011. SINGULAR 3.1.3 A
Computer Algebra System for Polynomial Computations. Centre for
Computer Algebra, University of Kaiserslautern. URL:
http://www.singular.uni-kl.de.

343343

