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Abstract – Arithmetic circuits require a verification process to 
prove that the gate level circuit is functionally equivalent to a high 
level specification. This paper presents an automatic equivalence 
checking technique to verify combinational arithmetic circuits at 
bit level. In order to efficiently verify gate level arithmetic circuits, 
we make use of computer algebra based approach so that the 
circuit and the specification are modeled in polynomial system and 
the verification problem is formulated as polynomial reduction 
techniques using Groebner basis of circuit polynomial 
corresponding ideal. To overcome costly Groebner basis 
computation as well as intensive polynomial reduction, we make 
use of a canonical decision diagram named Horner Expansion 
Diagram (HED), derive a suitable term order to represent and 
manipulate polynomials efficiently and find repetitive components 
based on automata. To evaluate the effectiveness of our verification 
technique, we have applied it to very large arithmetic circuits 
including multipliers. Preliminary experimental results show that 
the proposed verification technique is scalable enough so that large 
multipliers can efficiently be verified in reasonable run time and 
memory usage.  

I. INTRODUCTION 
Effort for verification of digital system designs grows as their 

size and complexity increase. In many practical designs such as 
Digital Signal Processing (DSP) for multimedia applications, 
arithmetic circuits are the main part of their datapaths. So 
verification of arithmetic circuits in a fast and precise way plays 
an important role in a digital system design flow. Several 
methods have been proposed to check an arithmetic circuit 
against its specification at a higher level of abstraction. Most of 
them are based on canonical graph-based representations like 
Binary Decision Diagrams (BDDs) that are not scalable because 
they suffer from space and time explosion problems when 
dealing with large arithmetic circuits especially multipliers 
[16][17].  

On the other hand, recently some techniques to verification of 
bit-level implementations using theory of Groebner basis have 
been proposed [6][8][9]. However, these techniques are 
computationally intensive and are not scalable to large 
arithmetic circuits. 

Addressing the above problems, this paper proposes a formal 
verification technique which combines Groebner basis and 
decision diagrams to effectively verify large arithmetic circuits. 
Fig. 1 shows our proposed verification technique which takes a 
gate level circuit and its high level specification as inputs and 
automatically checks whether the implementation is functionally 
equivalent to the specification or not. For doing so, first of all, 
the gate level circuit is converted to Boolean polynomials by 
looking for repetitive components like cascaded XORs, carry 
generation logics and so on.  In Section V, we will discuss how 
to find such repetitive components based on automata. Then the 
specification is described as a polynomial function and finally 
the equivalence checking is performed by polynomial 
manipulation and reduction based on Groebner basis [10]. 

As will be discussed in Section III, to check whether a given 
polynomial is a member of a polynomial system or not, a 

sequence of polynomial manipulations including polynomial 
divisions and multiplications are needed which makes such a 
processing complicated in terms of the run time and memory 
requirement. In order to overcome intensive polynomial 
reduction and Groebner basis computation, we make use of a 
canonical decision diagram called Horner Expansion Diagram 
(HED) [14] and also derive a topological order for polynomials' 
terms as discussed in Section V. This way, we will be able to 
verify large arithmetic circuits in reasonable run time and 
memory usage as experimentally shown in Section VI. 
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Fig. 1. Proposed verification technique. 

 

In summary, our contributions in this work are as follows: 
� Extracting a finite set of Boolean polynomials from the gate 

level implementation by looking for repetitive components. 
In contrast to [18][19][20], this method is applicable even 
when half adders and full adders cannot be extracted due to 
the local optimizations (Section V).  

� Determining a suitable variable ordering in such a way that 
leading terms of the original polynomials become relatively 
prime to avoid Groebner basis computation (Sections III 
and V). 

� Using a decision diagram, i.e., HED, to perform polynomial 
reduction efficiently so that a sequence of polynomial 
divisions and multiplications can be efficiently computed 
(Section V). 

� Showing empirical results to prove that our proposed 
verification technique enables us to verify very large 
industrial arithmetic circuits within practical time.  

The paper is organized as follows: Section II provides a brief 
review of related work. In Section III we briefly describe some 
mathematical background. Section IV presents our proposed 
verification technique in more details. This paper ends with the 
experimental results in Section V and the conclusion in Section    

 
II. RELATED WORK 

There is a large amount of literature on equivalence 
verification of arithmetic circuits against their specifications. In 
the literature of graph-based canonical representation, the 
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ordered Binary Decision Diagrams (BDDs) based verification 
techniques have been successfully used to verify small-sized 
arithmetic circuits [2]. However, they are not able to deal with 
large arithmetic circuits especially multipliers due to the 
existence of many varieties of different architectures as well as 
the lack of compact bit-level canonical representation. Word 
level extensions of BDDs like *BMDs [3] and TEDs [4] 
represent arithmetic circuits in more efficient ways but they 
need word level information of circuits which are not available 
at the gate level of abstraction.  

Another approach in verifying arithmetic circuits is to extract 
arithmetic operations like half-adders (HAs) and full-adders 
(FAs) from gate-level implementation and then generate an 
arithmetic model called Arithmetic Bit Level (ABL) to be 
compared with the higher-level description [18]. This technique 
needs an exhaustive process to check different XOR tree 
structures to verify carry signals, which becomes exponential in 
terms of run-time complexity. The verification approach 
presented in [19] utilizes a more efficient reverse-engineering 
process in extracting a network of half-adders from the gate 
level implementation. This approach uses a bit level adder 
(BLA) representation during the adder-extraction process. The 
BLA model is robust for several arithmetic circuit architectures. 
However, this method cannot handle pin-swap optimizations, 
related to the cases where partial product bits can be swapped 
with each other without changing the functionality of the circuit. 
The debugging algorithm in [20] is a much more efficient 
approach, which solves almost all of the above-mentioned 
problems. 

Several methods based on computer symbolic algebra are 
taken into account for verification of arithmetic circuits as well. 
In [5][6], arithmetic circuits are described with weighted 
number systems so arithmetic formula and equivalence checking 
can be performed by formula manipulations based on Groebner 
basis. This technique requires hierarchical information of circuit 
which is often unavailable. Symbolic algebra methods also have 
been used for verification of arithmetic circuits over finite rings 
[21]. This method checks the difference between two 
polynomial expressions by utilizing "vanishing polynomial" 
theory which actually limits its applicability to verification of 
arithmetic circuits due to using a word level representation of 
the datapaths.  

The authors of [13] have presented a formal approach to 
model and verify multiplier circuits over Galois fields F2

k using 
a computer algebra based technique. They have shown how to 
model Galois field multipliers as a polynomial system in F2

k. 
They have also shown how to formulate the verification 
problem as a membership test in a corresponding ideal.  In order 
to overcome the cost of Buchberger's algorithm [7], they have 
analyzed the circuit topology and derived a suitable term order 
to represent polynomials. This approach, however, is not 
applicable to integer multipliers due to carry propagation issues.  

The authors of [8] have proposed a formal verification 
technique in which ABL components [18] are modeled by 
polynomials over unique ring and their normal forms are 
computed with respect to the Groebner basis over rings Z2

k 
using computer algebra techniques. In order to overcome the 
expensive Groebner basis computation problem, the same 
authors have proposed a technique to directly generate 
individual output polynomials in terms of primary inputs [7]. 
However, there is no systematic way for comparing such 
polynomials against the specification and preprocessing of such 

very large polynomials is crucial for successful performance of 
the normal form algorithm. In [11] and [9], arithmetic circuits 
are represented as a network of half adders, full adders, and 
inverters and modeled as a system of linear equations. 
Functional correctness of the gate level implementation is 
proved by computing its algebraic signature using standard 
linear programming solvers and comparing it with the reference 
signature provided by the designer. It should be noted that if 
half adders and full adders could not be extracted due to 
optimizations done by synthesis tools, such a technique would 
not be applicable. 

III. ALGEBRAIC PRELIMINARIES 
In this section, we briefly describe Groebner basis concepts. 

These mathematical backgrounds are mostly based on [10]. Let 
m = n

nxxx ��� ...21
21  be a monomial in nxxx ,...,, 21  where all of 

the exponents n��� ,...,, 21  and variables are nonnegative 
integers. Let K be a computable field and K[��, ��, … , ��] be the 
polynomial ring in n variables so that its elements restricted to 0 
and 1. A finite linear combination of monomials in ��, ��, … , �� 
is a polynomial f. Let ��, ��, … , �� be polynomials in K 
[��, ��, … , ��].Then 
 < ��, ��, … , �� >={ ∑ ℎ
�


�

�� : ℎ�, ℎ�, … , ℎ� ∈   K [��, ��, … , ��]}  

is an ideal I.  So the finite set of polynomials F = {��, ��, … , ��} 
is called generator or basis of ideal I.  

It has been shown in [12] that every arbitrary ideal other than 
{0} has a basis with specific properties which is called Groebner 
basis. Groebner basis enables us to solve ideal membership 
problem. To describe Groebner basis, first we need to cover 
some basic definitions. 
Definition 3.1: Let f = �

�
� Xa�  be a nonzero polynomial in K 

[��, ��, … , ��]   and > be a monomial order. 
i. LM (f) is the leading monomial (the largest monomial) 

of  f  with respect to >. 
ii. LC (f) is the leading coefficient of f with respect to >. 

iii. LT (f) is the leading term of f with respect to >.  The 
initial term of f is LT (f) = LM (f) . LC (f). 

 
Definition 3.2: Let f, g and t be polynomials in 
K [��, ��, … , �� ]. We say that g ≠ 0 is reducible to t by f if there 
is a term M which can be divided by LM (f) in g and 
 = � −

� .  �

��(�).  ��(�)
 �. Where coefficient of M is c. It is denoted by �

�
→ 
 

.Let F be a polynomial set in K [��, ��, … , �� ], we say g is 
reducible to h with respect to F if there is a sequence of 
polynomials ��, ��, … , ��  ∈ � that 

��
→

��
→ … 

��
→  ℎ . We can also 

represent it by �
�
→ ℎ. If we cannot reduce h with respect to F 

anymore, we say h is normal form of g. 
Definition 3.3: Let � ⊂ K [��, ��, … , �� ]be an ideal other than 
{0}. The ideal of leading terms generated by the elements of    
LT (I) is denoted as <LT (I)> where 
��(�) = {��!: 
ℎ"# "�$%
% � ∈ � &$
ℎ ��(�) = ��!} .  
Definition 3.4:  The set G of ideal I is a Groebner basis if and 
only if for all polynomial f ∈ � the remainder of reducing f by 
polynomials of G is zero. This process is called membership 
testing of f over ideal I and denoted by  ∀� ∈ �, �

*
→  0. 

 To compute Groebner basis over a field, Buchberger’s 
algorithm in Fig. 2 is used. It makes use of a polynomial 
reduction technique named S-polynomial as defined below. 
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Definition 3.5: V(I) is the affine variety of ideal I such that 

+(�) = {(-�, -�, . . , -�)| �((-�, -�, . . , -�) =  0 �/# -11 � ∈ �} 
where-
 ∈ 2.For every generating set of ideal  I such as Groebner 
basis G, we have V(I)= V(G). 

Definition 3.6: Polynomial f is member of ideal I if it vanishes on V(I 
) or+(�) ⊂ +(�).  

In order to find out whether polynomial f is member of ideal I or not, 
we need to check the possibility of vanishing f on V (I). Regarding to 
definition 3.7, if set G is Groebner basis of ideal I, V(I) is equal to 
V(G). So for the membership testing, we need to compute Groebner 
basis. 

 
Definition 3.7 (S-polynomial): Let �, � ∈  K [��, ��, … , ��] be 
nonzero polynomials. The S-polynomial of f and g is defined as 
Spoly (f, g) = 345635(�),35(7)8

�9(�)
. � −  345635(�),35(7)8

�9(7)
. �. 

Where LCM(a, b) is a notation for the least common multiple of 
a and b).  
Example 3.1: Let � = 6 ��

?��
@ + 24��

� −  �� and � = 2��
���

D +
4��

E + 2�E and we have �� >  �� >  �E . The S-polynomial of f 
and g is defined below as �FG (��

?��
@, ��

���
D) is equal to ��

?��
D. 

Spoly (f, g) =  H�
IH�

J  

L H�
IH�

M . � − H�
IH�

J

�H�
�H�

J . � = 4��
���

� −  �

L
 ��

E − 2��
���

E −

 ��
��E 
It is obvious that S-polynomial computation cancels leading 

terms of the polynomials. 

 
Fig. 2. Buchberger’s Algorithm. 

As shown in Fig. 2, Buchberger’s algorithm first calculates 
all S-polynomials (lines 4-6 of Fig. 2) and then add non-zero S-
polynomials to the basis G (line 8). This process repeats until all 
of the computed S-polynomials become zero with respect to G. 
It is obvious that Groebner basis can be extremely large so its 
computation may take a long time and it may need large storage 
requirement as well.  The time and space complexity of this 
algorithm are exponential in terms of the sum of the total degree 
of polynomials in F, plus the sum of the lengths of the 
polynomials in F [10]. So it implies that when the size of F 
increases, the verification process may be very slow or in the 
worst-case may be infeasible.  

 
IV. PROPOSED VERIFICATION APPROACH 

Formally, the verification problem of an arithmetic circuit is 
characterized by a given specification fspec := (Y – ∑ N

 × O
 +
F
) whereN =  -P + 2-� + ⋯ + 2RT�-RT�, O =  UP + 2U� +
⋯ +  2�T�URT� and  F =  �P + 2�� + ⋯ + 2RT��RT�and  
V =  WP + 2W� + ⋯ + 2XT�WXT� where ai, bi, yi ϵ {0, 1}. We are 
also given a gate level circuit with {a0, …, am-1} , {b0, …, bm-1} 
and {c0, …, cm-1} as the primary inputs and {y0, …, yt-1} as the 
primary outputs.   

To check the equivalence between the polynomial 
specification (fspec) and the gate level implementation, we model 
the gate level circuit with a series of polynomials. Each 
polynomial models the operation of correspondence gate as 
shown below: 

Y = Z\�(-)  =>   � = Y − (1 − -) 
Y = NZ_(-, U) => � = Y − -. U 

Y = \`(-, U) => � = Y − (- + U − -. U) 
Y = a\`(-, U) => � = Y − (- + U − 2. -. U) 

 We denote these polynomials as {f1, …, fs} over K[x1, …, 
xn]. The specification polynomial is also considered as fspec ϵ 
K[x1, …, xn]. The generated Ideal I = <f1, …,  fs> is taken into 
account and therefore verification test can become a 
membership test of fspec over ideal I. To check whether fspec is a 
member of ideal I, its Groebner Basis needs to be computed. 

Please keep in mind that the most time consuming task in  
Buchberger’s algorithm is the reduction of the S-polynomials 
modulo G. A simple idea to speed up such computations is to 
reduce the number of S-polynomials to be computed. On the 
other hand, it is obvious that S-polynomial of a pair fi and fj 
whose leading power products are relatively prime, can be 
ignored. In other words, if  LCM(LM(fi),LM(fj)) = 
LM(fi)�LM(fj) then Spoly(fi, fj) *

→ 0. This criterion is indicating 
that on those cases where the leading monomials of f and g are 
relatively prime, Spoly(f, g) is always reduced to 0. Thus 
Buchberger’s algorithm does not need to consider Spoly(f, g). 
Therefore analyzing and deriving a suitable term order from the 
given circuit can be quite useful, because it causes every 
polynomial pair (f, g) in the generating set has relatively prime 
leading monomials, then Spoly(f, g)

*b
cd0 for all pairs f and g. 

Consequently, the polynomials ��, ��, … , �� extracted from 
the circuit (corresponding to ideal I) and represented using such 
a term order would itself constitute a Groebner basis of I. 
Although such a term order is derived and the very same 
concept is proposed in [13], it has been applied only to Galois 
field multipliers while in this work we are dealing with integer 
arithmetic circuits including integer multipliers. 

We derive an order for polynomial terms based on a 
topological analysis of the circuit. Since the circuit is acyclic, if 
we can represent each gate polynomial such that its output 
places in higher order than its inputs, then every two 
polynomials have relatively prime leading monomial and 
therefore {f1, …, fs} is itself Groebner basis [13]. Note that, in 
our case, variables are all binaries, so their degrees never 
increase. Another point is the fact that outputs of gates are 
represented as individual variables in the set of polynomials.  

In order to show how such a term ordering reduces the 
computational complexity of Buchberger’s algorithm let us 
consider gate level implementation of a two bit multiplier shown 
in Fig. 3.  

 
Fig. 3. Gate level implementation of a two bit unsigned multiplier 

Input: F=(f1,f2,…,fs), ideal I = <f1,f2,…,fs>�{0} 
Output: G = (g1, g2, …, gt) for ideal I 
1   G := F; 
2   V := G � G; 
3   WHILE V � 0 
4 FOR each pair (f,g) � V DO 
5  V := V - (f,g); 
6  Spoly(f,g) �	�G  r; 
7  IF r � 0 THEN 
8   G := G 
 {r}; 
9   V := V 
 (G � r); 
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To make every polynomial pair (f, g) relatively prime, the 
following variable ordering is taken into account: 

{y3> y2> y1> y0}>{w3> w2}>{ w0> w1}>{ a1> b1> a0> b0} 
Polynomials extracted from the specification and the 

implementation are described as follows: 
��eh� : = 8WE + 4W� + 2W� + WP − (2-� + -P). (2U� + UP) 

�P ≔  WP − -P. UP   �G(�P) = WP 
�� ≔  &P − -�. UP   �G(��) = &P 
�� ≔  &� − -P. U�   �G(��) = &� 
�E ≔  &� − -�. U�   �G(�E) = &� 

�? ≔  W� − (&P + &� − 2&P. &�)   �G(�?) = W� 
�@ ≔  &E − &P. &�   �G(�@) = &E 

�L ≔  W� − (&E + &� − 2&E. &�)   �G(�L) = W� 
�D ≔  WE − &E. &�   �G(�D) = WE 

After computing Groebner basis {f1, …, fs}, the second step 
is to reduce the specification polynomial (fspec) with respect to 
{f1, …, fs}. In order to facilitate the reduction process, we can 
simultaneously reduce fspec with respect to those polynomials 
which have outputs at the same level. Unfortunately, as for 
circuits with more inputs, the number of variables in 
polynomials increases greatly and therefore specification 
reduction over ideal Groebner basis of circuit’s polynomials 
becomes impractical and we get timeout for large circuits. Our 
idea to alleviate this issue is to partition the circuits into suitable 
components which are repeated in the circuit. In the following 
subsections we will discuss our idea in more details.  

A. How to Extract Repetitive Components 
    In order to reduce the numbers of polynomials, we have tried 
to extract those components which are being repeated in the 
circuit and create only one polynomial for all of the existing 
gates in these components. Using this method, the number of 
polynomials decreases significantly. Please note that unlike the 
technique presented in [8] which looks for HAs and FAs as 
repetitive components, we are looking for different forms of 
repetitive components including HAs and FAs. This way, if the 
proposed verification technique is unable to map a series of 
gates to HAs or FAs (due to optimizations), it is still able to 
verify the circuit by creating other forms of repetitive 
components and therefore the specification reduction over this 
set of new polynomials needs to be done. 

O
1 2

AA

1
1

1

22

2

vvv

v v v

X

X
1

1
2

2
X1X1v
X1X2v
X2v

O1A1v
O1A2O1v
O1A2O2v
O2A1v
O2A2vO

(a) (b) (c)

t1.1
t1.2
t1.3

t2.1
t2.2
t2.3
t2.4
t2.5

(d)  
Fig. 4. Cell library example (a) Components of cell library. (b) 

Pattern trees. (c) Pattern strings. (d) Pattern tree identifiers. 
To find repetitive components, a tree-based matching 

algorithm which utilizes Automata [22] is applied. We define 
our components in a cell-library and we use automaton to 
represent the cell-library. This approach is based on an encoding 
of the trees by strings of characters and on a string recognition 
algorithm. This method supports library descriptions in terms of 
base functions, each one encoded by a single character. For 
applying this method, we consider our circuit as a rooted acyclic 

graph which is called subject graph. The graph associated with 
library elements are called pattern graphs which are also acyclic 
and rooted. We also have corresponding pattern strings and 
pattern tree identifiers for each library component as shown in 
Fig. 4.  

The automaton processes strings that encode paths in the 
pattern trees. The automaton consists of a set of states, a set of 
transitions that are portioned into "goto" and "failure" 
corresponding to the status of detection of a character in a string 
and an output function that signals the full detection of a string. 
The automaton is constructed once for all elements of a given 
library. A part of automaton which detects library elements of 
Fig. 4 is shown in Fig. 5. 

To find repetitive components, the subject tree is visited in a 
bottom up fashion, and for each vertex all strings that are 
corresponding to paths to the leaves are processed. A match 
exists if the strings are recognized by the automaton as 
belonging to the same pattern tree. The algorithm complexity is 
linear in the size of the subject graph. 
 

 
Fig. 5. The matching automaton. The “goto” transitions are 

indicated by edges. 
 

Fig. 6 shows a part of a large adder circuit [1].  In this circuit 
the signal u computes the sum of signals a, b, c, d and e. This 
sum is computed in a tree fashion to minimize delays. Signal v 
computes the corresponding carry. As we can see in the figure, 
extracting half adders and full adders is a hard task and almost 
impossible. However, some repetitive components can be found 
by automata based on our cell library which decreases the 
number of polynomials significantly. 
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Fig. 6. Finding repetitive components and corresponding 

polynomials in an optimized circuit 
 

 By applying this technique to the circuit in Fig. 6, the 
number of polynomials is decreased from 14 to 6. The number 
of variables is also reduced from 19 to 12. The corresponding 
polynomials are as follows: 
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�� ≔ k − (- + U + ℎ − 2-U − 2-ℎ − 2Uℎ + 4-Uℎ) 
�� ∶= ℎ − (� + n + " − 2�" − 2n" − 2n� + 4�n") 

�E ≔ q − (- + � − 2-�) 
�? ≔   r − (�q + Uq + �U − 2�qU) 

�@ ≔   s −  (r + 1 − 2r1) 
�L ≔   1 −  (-n + "n + -" − 2-"n) 

 

B. Improving Polynomial Reduction Phase Using HED 

As mentioned before, final step of verification is reducing 
specification polynomials with respect to circuit polynomials 
which are Groebner basis. The polynomial reduction of a set is 
equal to some sequential polynomial division with respect to a 
specified monomial ordering. Considering P as the number of 
polynomials, this division should be performed P times. In each 
iteration regarding to the top variable of each polynomial, we 
need to divide the terms of the polynomial into two sections: the 
terms which are independent of top variable and the terms 
which are served as the coefficient of top variable. Division is 
continued by multiplication of coefficient of top variable into 
polynomial which is leading term is equal to the top variable 
and subtracting the product from polynomial specification of 
that iteration. In each iteration, we also need to simplify 
polynomials by eliminating terms with same monomials and 
reduce them to one term. So the complexity of the entire 
algorithm is really high.  

In order to perform such division process efficiently we need 
a suitable representation. The HED is a binary graph-based 
representation which is able to represent polynomial function by 
factorizing variables recursively as shown in (1), where const is 
a term which is independent of variable y, while linear is 
another term which is served as the coefficient of variable y [15].  
F(y,…)=F(y=0,…)+y�[F’(y=0,…)+…]= const + y� linear (1) 
Definition 4.1 (HED Representation): HED is a directed acyclic 
graph G= (VR, ED) with vertex set VR and edge set ED. While 
the vertex set VR consists of two types of vertices: Constant (C) 
and Variable (V), the edge set indicates integer values as weight 
attribute. A Constant node v has a value val(v)� Z as its 
attribute. A Variable node v has three attributes: an integer 
variable var(v) and two children const(v) and linear(v) � {V, 
C}. Hence, each vertex v in HED denotes an integer function fv 
defined recursively as follows: 
� If v � C (is a Constant node), then fv = val(v). 
� If v � V (is a Variable node), then fv = 

const(v)+var(v)*linear(v). 
Now suppose we need to compute fspec/fi where the top 

variable is x. After representing fspec and fi in HED, we will 
have:    

fspec = const(fspec) + linear(fspec)*x      fi = x - const(fi)  
and therefore instead of computing fspec/fi directly, we just 

need to consider the following computation: 
fspec  = const(fspec) -  linear (fspec) * const (fi)           

Obviously, we can access to constant and linear parts of 
polynomial specification w.r.t. a top variable with O(1).  

After completion of the reduction, if the reminder is not equal 
to 0, it means the design contains errors. Otherwise, the design 
has been implemented correctly. 

V. EXPERIMENTAL RESULTS 
In order to evaluate our proposed arithmetic circuit 

verification technique, it has been implemented in C++ and 
applied to several arithmetic circuits. In order to generate the 
gate level implementation of such circuits, their high level 
descriptions are synthesized using commercial synthesis tools. 
All experiments were conducted on a 2.4 GHz with Intel Core™ 
i5 processor and 4GB RAM running Linux. 

In the first experiment, we have extracted individual 
polynomials for all gates of N�N  unsigned multipliers where N 
varies from 3 to 128. We have used HED neither for 
representing our polynomials nor for reducing the specification 
over the polynomials set as a Groebner Basis. Taking this 
method into account, we encountered time outs for 64 bits and 
more (the time out, TO, is set to 6 hours) as indicated in major 
column “without using automata to find repetitive components” 
of Table 1. Note that in this table, N, #vars and #polys are the 
size of multiplier (both operands are N-bits), the number of 
variables and the number of polynomials, respectively. MO 
shows lack of memory during of execution. In order to compare 
our results with those of BDDs and SMT solvers, we have 
converted the polynomial specification into gate-level golden 
circuit. Then we have created a miter with the specification and 
implementation and check their equivalency. These results are 
also shown in minor columns “BDDs” and “Yices” of Table 1. 
We have also run Singular as a computer algebra system [23] 
and reported the results in minor column “SINGULAR” of 
Table 1. 
We have improved our method in two ways: 1) by looking for 
repetitive components in the circuit in order to reduce the 
number of polynomials and 2) using HED representation to have 
the reduction process done more efficiently. This way, we were 
able to verify large arithmetic circuits in appropriate run time.  
To illustrate the effectiveness of the proposed verification 
method, we have compared our results with those of Singular. 
We have used Singular to compute Groebner basis computation 
and polynomial reduction (ideal membership testing). Our 
results show that Singular encounters a memory explosion for 
up to 4-bit multipliers when it is not able to find repetitive 
components. When the number of polynomials is reduced by 
using automata, Singular has failed to verify 24-bit multipliers. 
The results are shown in major column “with using automata to 
find repetitive components” of Table 1. In the second 
experiment, we have applied our proposed verification 
technique to two complex arithmetic circuits: 1) a*b+c*d (the 
results are shown in Table 2) and a*b+c+d+e (the results are 
shown in Table 3). As shown in these tables SINGULAR can 
only verify the correctness up to 16-bits arithmetic circuits and 
the Groebner basis engine encounters a memory explosion while 
our method is able to verify 128-bit arithmetic circuits in 
reasonable run time. We have performed this experiment to 
show that our method is not limited to just some types of 
circuits and it can easily be applied to very large arithmetic 
circuits. Furthermore, the results in Table 3 indicate that our 
verification method is efficient to verify those circuits in which 
extracting HAs and FAs can rarely be done.  
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Table 1.  Verification of N�N multipliers with and without using automata and HED 
Without using automata to find repetitive components With using automata to find repetitive components 

Size 
(N) 

#vars #polys    Without Using HED (sec) SINGULAR 
(sec) 

BDD 
(sec) 

Yices 
(sec) 

#vars #polys     Using HED  (sec) SINGULAR 
(sec) 

3 39 33 0.87 2.73 0.09 0.02 15 7 0.00 0.00 
4 80 72 1.38 7.42 0.19 0.05 21 13 0.00 0.03 
8 384 368 14.16 MO 0.343 2.54 63 47 0.05 3.41 
16 1664 1632 110.76 MO MO TO 235 203 0.38 7.19 
24 3744 3696 617.82 MO MO TO 521 473 0.79 MO 
32 6912 6848 4054.32 MO MO TO 959 895 5.72 MO 
64 28160 28032 TO MO MO TO 3004 2876 143.95 MO 
96 63360 63168 TO MO MO TO 7931 7739 701.54 MO 

128 212862 212606 TO MO MO TO 24751 24495 4965.29 MO 
 

 

Table 2. Verification of a*b+c*d with using automata and HED 
representation 

Size (N) #vars #polys CPU time 
(sec) 

SINGULAR 
(sec) 

3 35 23 0.00 0.03 
4 74 58 0.06 4.52 
8 278 246 0.47 7.27 

16 1135 1071 6.84 MO 
24 3064 2968 149.55 MO 
32 7970 7842 706.32 MO 
64 23128 22872 4636.03 MO 
96 53709 53325 7848.61 MO 

128 104023 103511 13707.05 MO 
 

Table 3. Verification of delay optimized circuit of a*b+c+d+e with 
using automata and HED representation 

Size (N) #vars #polys CPU time 
(sec) 

SINGULAR 
(sec) 

3 54 39 0.04 2.60 
4 82 62 0.06 4.52 
8 215 175 0.33 6.79 

16 1028 948 6.05 MO 
24 2489 2369 112.58 MO 
32 4915 4755  225.97 MO 
64 7836 7516 676.42 MO 
96 22040 21560 4370.14 MO 

128 40917 40277 5928.14 MO 
 

VI. CONCLUSION 
In this paper, a formal method for modeling and verifying 

arithmetic circuits using a computer algebra based approach has 
been proposed. The verification test was formulated as a 
membership testing over the ideal generated by polynomials 
extracted from the circuit. We analyze the circuit topology and 
drive an order that makes polynomial set itself a Groebner basis. 
This test can be done by polynomial specification reduction over 
Groebner basis. For enhancing our method, instead of 
generating polynomials for each gate, we have generated 
polynomials for each repetitive component which has 
significantly improved the performance. To further improve our 
method in terms of the run time and memory usage, we have 
represented the polynomials by a graph based representation 
called HED.  
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