
Automated Debugging of Arithmetic Circuits using
Incremental Gröbner Basis Reduction

Farimah Farahmandi and Prabhat Mishra
Department of Computer and Information Science and Engineering

University of Florida, USA

Abstract—Symbolic algebra is a promising approach to verify
large and complex arithmetic circuits. Existing algebraic-based
verification methods generate a remainder to indicate buggy
implementation. The remainder is beneficial for debugging of
the faulty implementation since it can be used for automated
test generation, bug localization, and bug correction. However,
existing equivalence checking approaches are not scalable and
lead to explosion in size of the remainder when the design is
faulty. To make the matters worse, the location of the bug can also
lead to the explosion in the number of remainder terms. In this
paper, we propose an incremental equivalence checking method
to address the scalability challenges by solving the verification
problem in the increasing order of design’s input complexity. Our
proposed approach makes two important contributions. It is able
to generate smaller and compact remainders for large designs.
Our proposed incremental debugging is capable of localizing and
correcting hard-to-detect bugs irrespective of their location in the
design. Experimental results demonstrate that our approach can
efficiently debug most difficult bugs in large arithmetic circuits
when the state-of-the-art methods fail.

I. INTRODUCTION

Arithmetic circuits are critical components in most of the
modern designs due to their application in computation-
intensive tasks such as multimedia and signal processing.
They are also used in security-related hardware to imple-
ment cryptography operations. Increasing demand for fast
and accurate arithmetic components has led to several non-
standard and optimized implementations that are susceptible
to faults. The verification and debugging of arithmetic circuits
are complex due to bit-blasting and custom transformation of
the implementation based on different arithmetic and logical
relations. Similar challenges are also highlighted in recent
industrial studies [1]. Therefore, designers are seeking for
efficient and automated verification and debugging approaches.

Traditional automatic verification and debugging approaches
are mostly based on simulation, decision diagrams such as
BDDs, BMDs [2], reverse engineering [3] and SAT solvers [4].
They all suffer from scalability problems. Recent verification
and debugging approaches utilize symbolic computer algebra
[5], [6], [7], [8], [10] as shown in Figure 1. These methods
convert the gate-level implementation to a set of polynomials
and check whether implementation polynomials can construct
the functionality of the specification polynomial. These meth-
ods generate a remainder if the implementation and speci-
fication are not equivalent. These approaches are promising
to verify large arithmetic circuits when the implementation
is correct, or bugs exist very close to the primary inputs.
However, existing methods fail to verify buggy arithmetic
circuits when the bug is in the deeper stages of the design

Fig. 1. Overview of existing equivalence checking and debugging approaches.

or when there are multiple bugs. Since the remainder (either
zero or non-zero) defines the result of the equivalence checking
process, challenges in remainder generation raise questions
about scalability and applicability of existing approaches.
On the other hand, the produced remainder is beneficial to
efficiently debug faulty arithmetic circuits since it can be used
to generate directed tests to activate unknown bugs (if any)
in the implementation. Remainder generation is the first step
of the verification process. Therefore, unavailability of the
remainder implies that subsequent steps (test generation, bug
localization, and bug correction) cannot be performed.

Depending on the location of the bug, the remainder gen-
eration can be challenging. The existence of a bug in the
deeper stages of the design may make it extremely difficult
to generate the remainder due to an explosion in the number
of remainder terms (we refer this as term explosion effect).
The reason is that the faulty gate may introduce new terms
during the intermediate steps of the specification polynomial’s
reduction. These extra terms are multiplied to polynomials of
other gates and grow continuously until the remainder contains
only primary inputs, leading to an explosion in the number of
remainder terms.

Figure 2 compares the number of terms in different iter-
ations of correct and buggy implementations. As it can be
observed from Figure 2, the number of terms drastically grows
when the bug is in the deeper stages of the design. If the
number of remainder terms for a simple 4×4 multiplier grows
that quickly, it is impossible to deal with the term explosion
effect in case of buggy and complex arithmetic circuits.
Moreover, having several bugs in the implementation as well
as dealing with complex designs can make the remainder
generation infeasible (in the worst case, a remainder can
contain n! terms where n is the number of primary inputs).
The debugging approach presented in [9] performs well when
the bug is close to the primary inputs. However, it is expected
to fail if the bug is in the deeper stages of the design due to
term explosion effect. In other words, if existing approaches
cannot generate a remainder in a reasonable time, they are

not useful for debugging arithmetic circuits. We propose an
incremental equivalence checking method to enable fast and
compact remainder generation.

Fig. 2. Comparison of the number of terms in different iterations in
verification of a 4x4 multiplier when: i) the implementation is correct, ii)
the implementation is buggy and the bug is close to the primary inputs, and
iii) the implementation is buggy implementation and the bug is in the deeper
stages of the design (e.g., close to the primary outputs).

In this paper, we address the above challenges by proposing
an incremental debugging framework. The proposed approach
partitions the primary inputs’ space of the design in order
to solve the verification and debug problems in the increasing
order of the design complexity. The verification test is decom-
posed to n independent equivalence checking problems and it
is performed in several iterations where the equivalence of the
specification and implementation is checked with considering
primary inputs’ constraints. The basic intuition behind our
work is to observe the fact that it is efficient to debug an
error in a smaller region (e.g., the portion of the design that
multiples the first two bits) instead of searching in the whole
4x4 multiplier. If no bugs found in the region representing
1× 1 multiplication, in the next iteration a larger region (e.g.,
representing 2 × 2 multiplication) will be searched. On the
surface, it may seem that our approach will take longer than
solving directly on the original design, but as proposed work
(Section IV) and results (Section V) demonstrate that our well-
crafted incremental approach drastically reduces the debugging
complexity.

In each iteration, specification and implementation polyno-
mials are updated based on the primary inputs’ constraints,
and Gröbner basis reduction is used to generate a remainder in
order to define the result of the verification. If the verification
results in a non-zero remainder, the implementation is buggy.
We use the generated remainder as well as inputs’ constraints
to detect and correct the source of the error. Using the incre-
mental verification approach enables us to efficiently generate
a remainder for a faulty design. Our experimental results
demonstrate that our approach improves the performance of
existing debugging approaches by several orders of magnitude.

This paper makes three important contributions: i) develops
a scalable framework for incremental equivalence checking us-
ing Gröbner basis reduction, ii) enables incremental debugging
of hard-to-detect bugs, and iii) enables detection and fixing of
complex bugs when existing state-of-the-art techniques fail.

The rest of the paper is organized as follows. We discuss
related work in Section II. Section III provides an overview

about existing equivalence checking based on symbolic alge-
bra. Section IV describes our proposed incremental equiva-
lence checking and debugging framework. Section V presents
our experimental results. Section VI concludes the paper.

II. RELATED WORK

Traditional approaches of automated debugging of arith-
metic circuits rely on simulation-based techniques as well as
decision diagrams [2]. To address the scalability challenges of
these techniques, debugging approaches based on SAT solvers
were proposed. These approaches are based on either inserting
logic corrector components in the implementation [4], using
abstraction and refinements [11], [12] or using Quantified
Boolean Formula [13]. They model the circuit using CNF
model, and a SAT solver is used to localize the sources
of error. The success of these approaches is dependent on
the performance of SAT solvers, and they fail for large and
complex arithmetic circuits. There are some approaches based
on SMT solvers to find a counterexample and localize the
bug of the faulty implementation [14], [15]. However, these
approaches suffer from the required manual interventions and
cannot handle large designs. Model checking based methods
suffer from challenges in assertion generation as well as
state space explosion [16], [17], [18]. The idea of incre-
mental checking of the specification to the implementation
at intermediate comparison points instead of considering a
monolithic verification problem is not new. Techniques based
on induction and term rewriting is presented for verification
of arithmetic circuits [19], [20]. These methods use a theorem
prover as well as a database of rewrite rules to incrementally
verify the design. However, these methods suffer from manual
interventions and do not address the debugging problem.

Ghandali et. al [21] proposed an automated debugging
approach based on symbolic computer algebra which scans the
entire implementation to find and fix the bug in the design.
This approach suffers from scalability concerns. Farhamandi
and Mishra [9] generated directed tests to activate any un-
known bug and localize the source of the error. While these ap-
proaches [21], [9] are capable of fixing the unknown bug, their
effectiveness is dependent on the result (generated remainder)
of the equivalence checking techniques for buggy designs.
None of the existing techniques [6], [8], [22] are capable of
generating a remainder when the bug is deep inside the design.
In this paper, we propose an incremental equivalence checking
technique which enables efficient debugging by generating a
compact remainder for hard-to-detect bugs.

III. BACKGROUND AND MOTIVATION

Equivalence checking of arithmetic circuits against their
word-level specifications can be performed using symbolic
algebra [8], [5] that maps equivalence checking problem of
an arithmetic circuit to ideal membership testing. In algebraic
domain, ideal membership testing refers to checking whether
a polynomial resides inside a given ideal. In hardware equiv-
alence checking using symbolic algebra, the specification of
the circuit is modeled as a polynomial fspec, and the imple-
mentation is converted to a set of polynomials, which is used
to construct ideal I . In order to check the equality between the

specification and the implementation, fspec is checked to figure
out whether it belongs to ideal I . The equivalence checking
based on symbolic algebra inherits advantages from the word-
level abstraction of the specification of an arithmetic circuit
as well as its implementation.

Consider field K where K[x1, x2, ..., xn] is a polynomial
ring with variables x1, x2, ..., xn. Let M = x1

α1 ∗ x2α2 ∗
... ∗ xnαn be a monomial where {α1, α2, ..., αn} are non-
negative integers. f = c1 ∗M1+ c2 ∗M2+ ...cd ∗Md is called
polynomial in ring K[x1, x2, ..., xn] where c1, c2, ..., cd are
coefficients and M1,M2, ...,Md are monomials. A monomial
order “>” is defined over a set of monomials in a polynomial
such that the monomial set has the smallest element under
order > and if monomial Mi > Mj , we can conclude
Mi +Ms > Mj +Ms with respect to >. Considering order
> and polynomial f , LM(f) shows the largest monomial
of f , LC(f) shows the coefficient of LM(f) and LT (f)
shows the leading term of polynomial f which is equal to:
LT (f) = LM(f)∗LC(f). Set F = {f1, f2, ..., fs} constructs
an ideal I =< f1, f2, .., fs >= {

∑s
i=1 hi ∗ fi : hi, fi ∈

K[x1, x2, ..., xn]}. In other words, set F is called the generator
(basis) of ideal I . An ideal can have several basis. One of the
important basis is called Gröbner basis (G) which can solve the
ideal membership problem. To test whether f belongs to ideal
I , polynomial division is deployed. Polynomial f is reducible
by polynomial gj if leading term of f is divisible by leading
term gj (r = f − lt(f)

lt(gj)
∗ gj). Similarly, polynomial f can

be reduced over set G as fi
G−→+ r. If set G is Gröbner

basis of ideal I and reduction of f over set G generates
zero remainder, polynomial f resides in ideal I . Otherwise,
f does not belong to ideal I . Gröbner basis can be computed
by applying Buchberger algorithm [23]. Generator F can be
also Gröbner basis of Ideal I with respcet to > when all of
the polynomials in set F have relatively prime leading terms
[10]. In this case, Gröbner basis does not need to be computed
and F = G.

The arithmetic circuit equivalence checking formulation
starts with converting the design specification to a polynomial
fspec using primary inputs and primary outputs as variables.
fspec shows the word-level abstraction of the functionality
of an arithmetic circuit. For instance, the specification of a
n-bit multiplier with primary inputs A = {a0, a1, ..., an−1}
and B = {b0, b1, ..., bn−1} and primary output Z =
{z0, z1, ...z2n−1} can be formulated as Z = A ∗ B or can
be written as (22n−1 ∗ z2n−1 + ... + 2 ∗ z1 + z0) − (2n−1 ∗
an−1+ ...+2∗a1+a0)∗ (2n−1 ∗ bn−1+ ...+2∗ b1+ b0) = 0
where ai, bi, zi ∈ {0, 1}.

Similarly, the gate-level implementation can be modeled
as a set of polynomials (F) by converting each gate to one
polynomial as shown in Equation 1. Each variable xi shows
the gate input and each variable yi shows the gate output
where both input and output can get either zero or one values
(decimal) and xi2 = xi (same for yi).

y1 = ¬x1 → fnot : y1 − (1− x1) = 0,

y2 = x1 ∧ x2 → fand : y2 − x1 ∗ x2 = 0,

y3 = x1 ∨ x2 → for : y3 − x1 + x2 − x1 ∗ x2 = 0,

y4 = x1 ⊕ x2 → fxor : y4 − x1 + x2 − 2 ∗ x1 ∗ x2 = 0

(1)

Implementation polynomials (F = {f1, f2, ..., fs}) are in
the form of Z2[x1, x2, ..., xn]/〈x1 − x12, x2 − x22, ..., xn −
xn

2〉. Set F constructs an ideal I =< f1, f2, .., fs > over
Boolean ring Z2. Implementation polynomials are derived
based on Equation 1 and the topological order of the circuit
where the primary inputs have the lowest values and the
primary outputs have the highest values is considered. For
example, leading term of fnot is equal to y1 (LM(fnot) = y1).
Since combinational arithmetic circuits are acyclic and each
output variable appears in the polynomials once, polynomials
in set F have relatively prime leading terms. Therefore,
set F is itself Gröbner basis of ideal I . The equivalence
checking of the specification and the implementation maps to
test whether fspec belongs in ideal I . Polynomial division is
deployed to test the membership of fspec. The equivalence
checking starts with consecutively reducing the fspec over
implementation polynomials (F) until it leads to either zero
remainder or a remainder that contains only primary inputs.
If the remainder is zero, it shows that the arithmetic circuit
correctly implemented the specification. However, a non-zero
remainder indicates that the implementation is faulty.

Example 1: Suppose that our goal is to verify a 2x2
multiplier shown in Fig. 3. Suppose that, the OR gate with
inputs (A0, B0) has been incorrectly used instead of an
AND gate. The specification of a 2-bit multiplier is shown
by fspec. The topological order {Z3, Z2} > {Z1, R} >
{Z0,M,N,O} > {A0, A1, B0, B1} is considered for Gröbner
basis reduction. The verification procedure starts with reducing
fspec and its terms over implementation polynomials as shown
in Equation 2. For instance, term 4∗Z2 from fspec is replaced
by polynomial 4∗(R+O−2∗R∗O) since gate 7 constructs the
implementation polynomial Z2−(R+O−2∗R∗O) = 0. Note
that, terms in the same level are reduced together. The non-
zero remainder indicates that the implementation is not correct.
The remainder will become zero if gate 1 is replaced by an
AND gate and equivalence checking procedure is repeated.

Fig. 3. Gate-level netlist of a faulty 2x2 multiplier.

fspec : 8 ∗ Z3 + 4 ∗ Z2 + 2 ∗ Z1 + Z0 − 4 ∗ A1 ∗ B1 − 2 ∗ A1 ∗ B0

− 2 ∗ A0 ∗ B1 − A0 ∗ B0

step1 : 4 ∗ R + 4 ∗O + 2 ∗ Z1 + Z0 − 4 ∗ A1 ∗ B1 − 2 ∗ A1 ∗ B0

− 2 ∗ A0 ∗ B1 − A0 ∗ B0

step2 : 4 ∗O + 2 ∗M + 2 ∗N + Z0 − 4 ∗ A1 ∗ B1 − 2 ∗ A1 ∗ B0

− 2 ∗ A0 ∗ B1 − A0 ∗ B0

step3(remainder) : A0 + B0 − 2 ∗ A0 ∗ B0

(2)

Fig. 4. Overview of our proposed approach. Our overall flow consists of
three different parts: i) partitioning the inputs’ space into different constraints
based on a selected inputs’ order, ii) remainder generation using incremental
equivalence checking; and iii) incremental debugging of the design.

IV. EFFICIENT DEBUGGING OF ARITHMETIC CIRCUITS

In this paper, we present an approach to incrementally
perform equivalence checking between an arithmetic circuit
specification and its implementation. We consider gate mis-
placement that changes the functionality of the design as our
fault model. Figure 4 shows an overview of our proposed
approach. Figure 4 highlights three key parts of our approach:
i) partition the inputs’ space into different constraints based on
a selected inputs’ order; ii) incremental equivalence checking;
and iii) incremental debugging approach. The rest of this
section describes these steps in detail.

A. Remainder Generation using Incremental Equivalence
Checking

In this section, we present an approach to solve the
equivalence checking problem in complex arithmetic circuits
incrementally. The proposed approach is based on partitioning
the input space of the design by applying certain constraints on
primary inputs to solve the equivalence checking problem for
each input constraint. If set M = {0, 1}n shows all input com-
binations of a design with input bits {x0, x1, ..., xn−1} and if
specification (S) and implementation (I) are equivalent for all
combinations of (S M≡ I), they should also be equivalent for any
input combinations that belongs to M (∀M ⊂M, S M≡ I). If
the implementation is buggy, at least one of the intermediate
reductions will result in a non-zero remainder.

Clearly, it is not feasible to repeat the equivalence checking
procedure for all 2n input combinations if the design contains
n bits of primary inputs. In the existing methods, the inputs
are represented by abstract symbols that can get any values.
However, we propose an input space partitioning method that
is based on keeping some of the primary inputs in symbolic
form and assigning Boolean values (either zero or one) to

the rest of the primary inputs. This approach expedites the
remainder generation time, and it also reduces the number
of terms in the remainder and makes it possible to generate
a remainder irrespective of the location of the bug. In other
words, this approach prevents the remainder’s term explosion
effect.

Algorithm 1 shows our input partitioning approach. Given
the set of primary inputs K with a particular order the algo-
rithm returns n different constraints on primary inputs where
n is the number of primary inputs. Initially, the algorithm sets
all of the inputs to zero except the first input in set K which
is kept in the symbolic form, and the algorithm adds them
to the set of results M (lines 5-8). In the next step, it keeps
the first input in the symbolic form and sets the second input
of the ordered set as ’1’, and sets other inputs to ’0’, and
adds the constraints to the result. This process continues until
all of the inputs are kept in their symbolic form except the
last one which is set to true. The variable index presents the
index of primary inputs that should be assigned to true (line
11). The variables before the index variable are kept in their
symbolic form, and variables that come after the index are
assigned to false (lines 12-15). In each iteration, the index
variable is updated (line 16). The algorithm returns the set of
constraints as output. This algorithm guarantees (see the proof
of Theorem 1) that the entire inputs’ space is covered since
all of the combinations of primary inputs are considered (each
input bit is assigned to either one, zero or kept in the symbolic
form which can take both values).

Algorithm 1 Generation of Input Constraints
1: procedure INPUT–CONSTRAINTS–GENERATOR
2: Input: Primary inputs K
3: Output: Set of Constraints Map M
4: new map M = {}; n = sizeOf(K)
5: M.add(0,K[0])
6: for i = 1; i < n; j ++ do
7: M.add(i, false)

8: M.add(M), index = 1
9: for i = 0; i ≤ n; i++ do

10: M = {}
11: M.put(index, true)
12: for j = 0; j < index; j ++ do
13: M.add(j,K[j])

14: for j = index+ 1; i ≤ n; j ++ do
15: M.put(j, false)

16: index++
17: M.add(M)

return M

Example 2: Assume that we want to partition the input space
of the 2-bit multiplier shown in Figure 5 using Algorithm 1.
Suppose that primary inputs are given in the following order:
{A1, B1, A0, B0}. Table I shows the four different constraints
on primary inputs. It can be easily verified that these four
constraints cover the entire primary inputs’ space. The first and
second rows cover two combinations each, the third row covers
four combinations, and the last row covers eight combinations.
Therefore, it covers all sixteen combinations in Table 1.

Fig. 5. Faulty netlist with one bug (gate 8 should have been an AND)
TABLE I

INPUT CONSTRAINTS TO EFFICIENTLY VERIFY AND DEBUG FAULTY
CIRCUIT SHOWN IN FIGURE 5.

A1 B1 A0 B0

A1 0 0 0
A1 1 0 0
A1 B1 1 0
A1 B1 A0 1

Theorem 1. A constraint table with n variables (n rows)
effectively captures 2n input sequences.

Proof. The first row of the constraint table covers two
of the input sequences since the first variable is kept as its
symbolic form (which it can be either 0 or 1) and other
variables are assigned to 0s. Similarly, the second row also
covers two combinations as the first variable is in its symbolic
form and the second variable is fixed to 1 and the rest of
the variables are assigned to zero. Likewise, in the row i
where i 6= 1, i variables are in their symbolic forms and one
variable is assigned to 1 and rest of the variables are assigned
to 0. Therefore, row i 6= 1 captures 2i−1 input sequences.
Therefore, for n (n > 1) rows we have:

2 +

n∑
i=2

2i−1 = 2 + (2n − 2) = 2n

We propose an incremental equivalence checking method
using the constraints computed based on Algorithm 1. The
original equivalence checking problem is mapped to n equiv-
alence checking sub-problems where the specification and
implementation polynomials are updated by applying the
corresponding constraints. In each sub-problem, a new set
of implementation polynomials is computed based on prop-
agating the integer values of the corresponding constraint and
considering them while constructing polynomials of each gate
and each fanout-free region. Specification polynomial is also
updated by applying the conditions of primary inputs in the
original specification polynomial. In each sub-problem, the
corresponding specification polynomial is reduced over the
related implementation polynomials. If the remainder is non-
zero, the given constraint manifests some bugs in the design.
The implementation and specification of an arithmetic circuit
are equivalent if remainders of each of the n sub-problems is
computed as a zero remainder.

Algorithm 2 shows the procedure of incremental equiva-
lence checking for one iteration. It takes input constraints Mi,
original specification polynomial fspec as well as partitioned
gate-level netlist C as inputs. It evaluates whether specification

Algorithm 2 Incremental Equivalence Checking Algorithm
1: procedure INCREMENTAL EQUIVALENCE–CHECKER
2: Input: Input constraint Mi, specification polynomial
fspec, Gate-level netlist C

3: Output: Remainder r if the implementation is faulty
4: fspeci =findSpecificationPolynomial(fspec, Mi)
5: Fi =findImplementationPolynomials(C, Mi)
6: ri = reduction of fspeci over fjs ∈ Fi
7: if (ri! = 0) then
8: Implementation is buggy
9: return ri

return 0 . correct implementation for constraint Mi

fspec and implementation C are equivalent considering the
constraint Mi. The algorithm returns a counterexample in case
of mismatch. Specification polynomial fspec is updated based
on the input constraints (line 4). Implementation polynomials
corresponding to fanout-free region’s of C are also recon-
structed by applying the constraints. Note that, the polynomial
of a fanout-free region is reconstructed if at least condition
of one of the region’s inputs is different. Otherwise, the
polynomial computed in previous iteration is reused. The
equivalence checking uses Gröbner basis reduction to reduce
fspeci over implementation polynomials Fi to find a non-zero
remainder if a bug exists in the implementation. The overall
equivalence checking algorithm consists of n iterations each
responsible for one inputs’ constraints.
Example 3: Consider the 2-bit multiplier shown in Figure 5.
We want to apply the incremental equivalence checking ap-
proach of Algorithm 2 using all of the input constraints shown
in Table I to verify the correctness of the implementation.
Equation 3 shows the steps of the verification. Specification
and implementation polynomials are updated using each con-
straint. For instance, polynomial of gate 3 is computed as:
N = A0 ∗ B1 = 0 as A0 and B1 are considered zero in the
first iteration (first row of the Table I). Since the last iteration
generates a non-zero remainder, the implementation is faulty.

F1 = {Z0 = 0,M = 0, N = 0, O = 0, R = 0, Z1 = 0, Z2 = 0, Z3 = 0}
fspec1 : 8 ∗ Z3 + 4 ∗ Z2 + 2 ∗ Z1 + Z0

step11(remainder) : 0

F2 = {Z0 = 0,M = 0, N = 0, O = A1, R = 0, Z1 = 0, Z2 = A1, Z3 = A1}
fspec2 : 8 ∗ Z3 + 4 ∗ Z2 + 2 ∗ Z1 + Z0 − 4 ∗ A1

step12 : 2 ∗ Z1 + Z0 + 8 ∗ A1

step22(remainder) : 8 ∗ A1

(3)
Different ordering improves the complexity of the incremental
verification approach and enables generation of a more effi-
cient remainder for the same bug. Moreover, the complexity of
equivalence checking using the given constraint is lower than
existing approaches. The generated remainder also has lower
complexity compared to with the original remainder that can
be achieved with existing methods (r = 8.A1 ∗B1 − 8 ∗A1 ∗
A0 ∗B0 ∗B1).

The merit of this approach can be observed for verify-
ing complex and buggy implementation since the size of
the remainder’s terms are reduced by assigning the design

variables to either zero or one. Therefore, the possibility of
term explosion is drastically reduced. On the other hand, if
the implementation is correct, all of the n iterations should
be performed. However, the time complexity does not grow n
times since the time and memory complexities of most of the
iterations are negligible.

B. Incremental Debugging

The generated remainder and the corresponding constraints
can be used to debug the faulty design more effectively based
on the approach presented in [9]. Our approach is orthogonal
to [9] and can be used on top of it. To generate directed tests
to activate the existing fault, assignment to the remainder’
variables can be performed such that the integer value of
the remainder becomes non-zero. Smaller remainder needs
less effort to generate directed tests. The generated test and
associated constraints are used to find faulty outputs and
localize the source of the bug. The remainder contains terms
which show the difference in the functionality of the faulty
gate with the expected correct gate based on the functionality
of the gate’s inputs. Therefore, for each suspicious gate, two
patterns are constructed based on Table II to detect and correct
the source of the bug. Using the incremental debugging, it is
possible that some inputs of gates are equal to zero. Therefore,
some suspicious AND gates may have two equal patterns
during pattern construction. It can be observed from Table II,
while generating patterns for a suspicious AND gate, if either
input a or b is equal to zero, then P1 and P2 will be equal.
Only in this case, the equivalence checking should be repeated
in order to find the solution of the faulty AND gate (whether
the correct gate should be an OR gate or a XOR gate).

TABLE II
TEMPLATES CAN BE CAUSED BY GATE MISPLACEMENT ERROR

Faulty Gate Appeared Remainder’s Pattern Correct Gate

AND (a,b) P1 : −a− b+ 2 ∗ a ∗ b OR (a,b)
P2 : −a− b+ 3 ∗ a ∗ b XOR (a,b)

OR (a,b) P1 : a+ b− 2 ∗ a ∗ b AND (a,b)
P2 : a ∗ b XOR (a,b)

XOR (a,b) P1 : a+ b− 3 ∗ a ∗ b AND (a,b)
P2 : −a ∗ b OR (a,b)

Algorithm 3 shows an overview of our proposed incremental
approach. The algorithm includes four key parts: i) choosing
an efficient order of the primary inputs (line 3); ii) partitioning
the inputs’ space into different constraints based on the given
order (line 4 is Algorithm 1); iii) incremental equivalence
checking (line 6 is Algorithm 2); and iv) incremental debug-
ging (lines 9-12) which can be performed using [9].
Example 4: Considering the faulty implementation shown in
Figure 5 and remainder r = 4 ∗ A1, the only assignment that
makes r non-zero is A1 = 1. Considering the other constraints
that generates the remainder, A1, B1, A0, B0 = “11XX” is a
directed test to activate the fault. The test activates the effect
of the bug in primary output Z3. Therefore, gates 2, 3, 4, 6, 8
are suspicious. Patterns are constructed for each of the gate
as 2(P1 = P2 = 2 ∗ A1), 3(P1 = P2 = 1), 4(P1 = P2 =
4 ∗ A1), 6(P1 = P2 = 0), 8(P1 = 8 ∗ A1, P2 = 0). Therefore,
gate 8 is faulty and it should be replaced with an AND

Algorithm 3 Incremental debugging Algorithm
1: procedure INCREMENTAL –DEBUGGING–ALGORITHM
2: Input: Specification polynomial fspec, Gate-level

netlist C, Primary inputs PI
3: Output: Potential faulty gate and its solution
4: K = OrderPrimaryInputs(PI)
5: M=GenerateInputConstraints(K)
6: for each input constraints Mi ∈ M do
7: ri=IncrementalEquivalenceChecking(Mi, fspec, C)
8: if (ri! = 0) then
9: T=GenerateDirectedTests(ri)

10: G=BugLocalization(T, C)
11: (G, s)= BugDetectionAndCorrection(G)
12: gate G is buggy and s is the solution
13:

return Implementation is correct . if none of the
constraints finds a non-zero remainder

gate. Note that the weight of each gates’ output is computed
by considering known weight of primary inputs and outputs,
and traversing in both backward and forward directions while
propagating the weights based on the approach outlined in
[21].

V. EXPERIMENTS

A. Experimental Setup
Incremental equivalence checking and debugging algorithms

were implemented using a Java program and experiments
were performed on an Intel core i7 Processor with 16 GB
memory. We have tested our approach on post-synthesized
gate-level integer arithmetic circuits that implement adders and
multipliers. The post-synthesized integer arithmetic circuits are
more difficult to verify and debug due to their optimized archi-
tectures and their carry chains. The designs were synthesized
using Xilinx synthesis tool. We consider gate misplacement
that changes the functionality of the design as our fault model.
To illustrate that our debugging approach can fix errors form
different stages of the design, we partitioned the implemen-
tation in four levels and several gates from these levels were
randomly replaced with a faulty gate to create erroneous im-
plementations. Inputs’ constraints are generated automatically
using a program. In order to generate the remainder, we have
created three different threads: i) using no input constraints (as
described in Section III which is similar to [6]), ii) using input
constraints starting from the least significant input bits, and iii)
using input constraints starting from the most significant bits.
We have considered the fastest time for remainder generation
among these three threads for the reported time in equivalence
checking. In other words, when any one of these threads
generates a remainder, the other two threads are terminated.
We compared our equivalence checking and debugging results
with state-of-the-art approaches [6], [9].

B. Results
Table III presents the results of our incremental equivalence

checking and debugging approaches. The first column presents
the type of the benchmarks which are either two-input rip-
ple carry adders or two-input array multipliers. The second

TABLE III
THE RESULTS OF THE PROPOSED INCREMENTAL EQUIVALENCE AND DEBUGGING APPROACHES FOR INTEGER ARITHMETIC CIRCUITS. TO = TIMEOUT

AFTER 5 HOURS; MO = MEMORY OUT OF 16 GB.

Type Size #Gates Bug. Loc. Equivalence checking (s) Debugging (s)
[9] Our Approach Imp.Z3 [6] Ours Imp. TG BL DC Total TG BL DC Total

Post-
Syn

Mult.

8x8 368

0− 1/4 23.35 0.02 0.02 1x 0.08 0 0.05 0.13 0.01 0 0.01 0.02 6.5x
1/4 − 2/4 22.83 45.31 0.2 114.15x 5.17 0.01 3.64 8.82 0.02 0 0.06 0.08 110.25x
2/4− 3/4 22.59 TO 0.23 98.21x 0.12 0.01 0.44 0.58 ∗
3/4− 4/4 23.13 TO 0.81 28.5x 0.04 0 0.23 0.27 ∗

16x16 1.6K

0− 1/4 107.1 0.51 0.51 1x 0.34 0.01 0.69 1.04 0.02 0 0.03 0.05 20.8x
1/4 − 2/4 104.5 TO 1.42 73.6x 0.02 0.01 0.2 0.23 ∗
2/4− 3/4 105.4 MO 1.58 66.7x 0.28 0.01 0.42 0.71 ∗
3/4− 4/4 109.6 MO 0.31 353.54x 0.03 0.01 0.55 0.59 ∗

32x32 7K

0 − 1/4 MO 1.57 1.57 1x 0.75 0.1 5.27 6.12 0.08 0.01 0.92 1.01 6.05x
1/4 − 2/4 MO MO 1.33 ∗ 0.06 0.01 4.74 4.81 ∗
2/4 − 3/4 MO MO 3.29 ∗ 0.1 0.01 12.51 12.62 ∗
3/4 − 4/4 MO MO 1.58 ∗ 0.05 0.06 6.36 6.47 ∗

64x64 28K

0 − 1/4 MO 16.43 16.43 1x 2.7 5 29.21 36.91 0.4 0.02 8.33 8.75 4.21x
1/4 − 2/4 MO MO 41.33 ∗ 1.94 0.1 28.72 30.76 ∗
2/4 − 3/4 MO MO 80.25 ∗ 1.74 0.1 346.16 348 ∗
3/4 − 4/4 MO MO 13.65 ∗ 0.2 0.3 26.48 26.99 ∗

128x128 132K

0 − 1/4 MO 262.4 262.4 1x 4.7 28 379.4 412.1 3.5 0.5 89.15 93.15 4.42x
1/4 − 2/4 MO MO 1587.5 ∗ 4.1 1.12 960.72 965.94 ∗
2/4 − 3/4 MO MO 1260.1 ∗ 1.1 2.24 1219.8 1223.14 ∗
3/4 − 4/4 MO MO 303.83 ∗ 0.35 3.5 75.35 79.29 ∗

Post-
Syn

Adder
64x64 573

0− 1/4 51.36 0.2 0.2 1x 0.69 0 0.31 0.82 0.12 0 0.02 0.14 5.85x
1/4 − 2/4 38.39 TO 3.18 12.07x 0.02 0 0.04 0.06 ∗
2/4− 3/4 32.61 TO 3.33 9.79x 0.01 0 0.09 0.10 ∗
3/4− 4/4 30.51 TO 1.17 26.07x 0.03 0 0.08 0.11 ∗

128x128 1.2K

0 − 1/4 101.1 1.16 1.16 1x 1.99 0.01 0.5 2.5 0.01 0 0.09 0.1 25x
1/4 − 2/4 115.8 TO 4.2 27.6x 0.01 0 0.12 0.13 ∗
2/4 − 3/4 116.9 MO 9.04 12.93x 0.02 0 0.27 0.29 ∗
3/4 − 4/4 115.9 MO 1.88 61.64x 0.05 0 0.34 0.39 ∗

256x256 2.3K

0 − 1/4 158 3.84 3.84 1x 3.35 0.1 1.51 4.96 0.11 0.01 0.07 0.19 26.10x
1/4 − 2/4 252.5 TO 93.4 2.7x 0.03 0.01 0.18 0.22 ∗
2/4 − 3/4 281.5 MO 40.62 6.93x 0.01 0.01 0.22 0.24 ∗
3/4 − 4/4 301.7 MO 20.35 14.82x 0.03 0.01 0.63 0.67 ∗

“*” indicates our approach works but existing method fails. “ ” shows the cases when test generation, bug localization/correction cannot be done due to lack of the remainder.

and third columns indicate the input size (firstOperand ×
secondOperand) and design size (number of gates), respec-
tively. The fourth column shows the location of the bug. We
partition the implementation into four levels, e.g. “0 − 1/4”
refers to the gates closest to the primary inputs and “3/4−4/4”
refers to the gates which are placed in the deeper stages of
the design (closest to the primary outputs). The fifth column
shows the equivalence checking result using Z3 SMT solver
[24]. To use a SMT solver, we have converted polynomials
(specification and implementation polynomials) into SMT
solver format. The sixth column presents the equivalence
checking (run-time in seconds) results of [6] for a faulty
design. The seventh column indicates the time of our proposed
incremental equivalence checking method which includes the
time of the inputs’ space partitioning as well as Algorithm 2.
The eight column presents the improvement (Imp.) provided
by our approach in comparison with the best result (indicated
using underscore) of existing approach shown in fifth and sixth
columns. In the table, “∗” indicates that our approach performs
well, whereas the existing approach [6] fails. The SMT solver
tries to find a counterexample when implementation and
specification are not equal. As it is shown, the SMT solver
cannot find a counterexample for large designs. Moreover,
there is no efficient and fully automatic debugging approach
for fixing the bug using SMT solvers. It can be observed that
when a bug exists on deeper stages of the design, this approach
fails even for very small benchmarks. When the bug is close
to the primary inputs, the incremental approach can take more
time to finish since it goes through several iterations if they
result in a zero remainders. However, when the bug is not near
primary inputs, our approach not only makes the checking

possible but also is faster by several orders-of-magnitude.
The next four columns show the time (in seconds) required

for test generation (TG), bug localization (BL), debug (DC)
and total (TG+BL+DC), respectively, using [9]. The subse-
quent four columns shows the same features using our pro-
posed approach. The test generation time is dependent on the
number of terms in the reminder. Since our approach generates
more compact remainder, test generation time has improved
significantly. If a non-zero remainder can be obtained using
a smaller number of inputs’ constraints, the remainder will
be more compact. Since we use the constraints’ order where
most significant bits comes first, if the bug exists close to
the primary outputs, the chance of obtaining a more compact
remainder is more and test generation time is reduced. The
results show that our approach requires less time to perform
bug localization since the size of the generated remainder is
small, and as a result, the number of directed tests are less.
Moreover, the results show the effectiveness of incremental
debugging approach based on required time for bug detection
and correction compared to [9]. Based on the inputs order that
we have considered, if a bug is located in middle stages of the
design, the number of suspicious gates is increased, therefore,
the time for bug correction and detection increases. In the
table, “ ” indicates that test generation, bug localization, and
bug correction are not possible due to lack of the remainder.
Finally, the last column presents the improvement (Imp.)
provided by our incremental debugging approach. Clearly,
our proposed approach can drastically reduce the overall
debugging effort. Most importantly, it is able to debug hard-
to-detect errors when existing state-of-the-art methods fail.

Table IV presents the equivalence checking time for correct

TABLE IV
THE EQUIVALENCE CHECKING TIME FOR CORRECT DESIGNS.

Benchmark Size Z3
SMT Solver [5] Our Approach Imp. on Z3

Post-
Syn.

Multiplier

8x8 47.81 0.04 0.05 957.04x
16x16 TO 0.11 0.16 *
32x32 MO 0.42 0.43 *
64x64 MO 2.50 2.68 *

128x128 MO 19.25 19.77 *
Post-
Syn.

Adder

64x64 31.84 0.08 0.1 318.4x
128x128 190.61 0.4 0.44 433.27x
256x256 513.98 0.84 0.88 584.07

implementations of different designs. We have compared our
proposed framework with Z3 SMT solver and [6]. As it can
be observed, our method outperforms the Z3 and its perfor-
mance is comparable with [6]. Table IV and V demonstrate
that our approach performs well irrespective of whether the
implementation is buggy or not.

Our experimental results highlight three important aspects
of our debugging approach. First, using the inputs’ constraints
as well as the incremental debugging address the scalability
issues of the existing arithmetic circuits’ equivalence check-
ing methods. Second, our incremental equivalence checking
method enables more compact remainder generation that can
improve the required time for test generation, bug localization
and bug detection. Finally, the debugging approach auto-
matically and efficiently detects and corrects unknown bugs
regardless of its complexity and location in the design.

VI. CONCLUSION

In this paper, we presented an incremental equivalence
checking and debugging framework for arithmetic circuits.
The proposed approach made three important contributions. It
partitions the primary inputs’ space of the design in order to
solve the verification and debug problems in the increasing
order of the design complexity. Moreover, it developed an
incremental equivalence checking algorithm to enable genera-
tion of compact remainders. Finally, the proposed incremental
debugging enabled efficient bug detection and correction.
Our experimental results demonstrated that our incremental
verification framework is several orders-of-magnitude faster
than existing state-of-the-art approaches.

VII. ACKNOWLEDGMENTS

This work was partially supported by grants from National
Science Foundation (CNS-1441667), Semiconductor Research
Corporation (2014-TS-2554) and Cisco.

REFERENCES

[1] U. Krautz, V. Paruthi, A. Arunagiri, S. Kumar, S. Pujar, and T. Babin-
sky, “Automatic verification of floating point units,” in 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 2014,
pp. 1–6.

[2] R. E. Bryant and Y.-A. Chen, “Verification of arithmetic circuits with bi-
nary moment diagrams,” in Proceedings of the 32nd annual ACM/IEEE
Design Automation Conference. ACM, 1995, pp. 535–541.

[3] M. Haghbayan, B. Alizadeh, P. Behnam, and S. Safari, “Formal verifica-
tion and debugging of array dividers with auto-correction mechanism,”
in VLSI Design and 2014 13th International Conference on Embedded
Systems, 2014 27th International Conference on. IEEE, 2014, pp. 80–
85.

[4] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and
logic debugging using boolean satisfiability,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 24,
no. 10, pp. 1606–1621, 2005.

[5] F. Farahmandi and B. Alizadeh, “Groebner basis based formal ver-
ification of large arithmetic circuits using gaussian elimination and
cone-based polynomial extraction,” Microprocessors and Microsystems,
vol. 39, no. 2, pp. 83–96, 2015.

[6] M. Ciesielski, C. Yu, W. Brown, D. Liu, and A. Rossi, “Verification of
gate-level arithmetic circuits by function extraction,” in Proceedings of
the 52nd Annual Design Automation Conference. ACM, 2015, p. 52.

[7] T. Pruss, P. Kalla, and F. Enescu, “Equivalence verification of large
galois field arithmetic circuits using word-level abstraction via gröbner
bases,” in Proceedings of the 51st Annual Design Automation Confer-
ence. ACM, 2014, pp. 1–6.

[8] A. Sayed-Ahmed, D. Gro, M. Soeken, R. Drechsler et al., “Formal
verification of integer multipliers by combining gröbner basis with logic
reduction,” in 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2016, pp. 1048–1053.

[9] F. Farahmandi and P. Mishra, “Automated test generation for debugging
arithmetic circuits,” in 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2016, pp. 1351–1356.

[10] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G.-M. Greuel, “An
algebraic approach for proving data correctness in arithmetic data paths,”
in International Conference on Computer Aided Verification. Springer,
2008, pp. 473–486.

[11] S. Safarpour and A. Veneris, “Abstraction and refinement techniques
in automated design debugging,” in Seventh International Workshop on
Microprocessor Test and Verification (MTV’06). IEEE, 2006, pp. 88–93.

[12] B. Keng and A. Veneris, “Path-directed abstraction and refinement for
sat-based design debugging,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 32, no. 10, pp. 1609–
1622, 2013.

[13] H. Mangassarian, A. Veneris, S. Safarpour, M. Benedetti, and D. Smith,
“A performance-driven qbf-based iterative logic array representation
with applications to verification, debug and test,” in 2007 IEEE/ACM
International Conference on Computer-Aided Design. IEEE, 2007, pp.
240–245.

[14] A. Sülflow, G. Fey, and R. Drechsler, “Experimental studies on smt-
based debugging,” in IEEE Workshop on RTL and High Level Testing,
2008, pp. 93–98.

[15] T. Matsumoto, S. Ono, and M. Fujita, “An efficient method to localize
and correct bugs in high-level designs using counterexamples and
potential dependence,” in VLSI and System-on-Chip, 2012 (VLSI-SoC),
IEEE/IFIP 20th International Conference on. IEEE, 2012, pp. 291–294.

[16] B. Keng, S. Safarpour, and A. Veneris, “Bounded model debugging,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 29, no. 11, pp. 1790–1803, 2010.

[17] M. K. Ganai and A. Gupta, “Efficient bmc for multi-clock systems
with clocked specifications,” in 2007 Asia and South Pacific Design
Automation Conference. IEEE, 2007, pp. 310–315.

[18] J. A. Kumar, S. N. Ahmadyan, and S. Vasudevan, “Efficient statistical
model checking of hardware circuits with multiple failure regions,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 33, no. 6, pp. 945–958, 2014.

[19] S. Vasudevan, J. A. Abraham, V. Viswanath, and J. Tu, “Automatic
decomposition for sequential equivalence checking of system level and
rtl descriptions,” in Proceedings of the Fourth ACM and IEEE Inter-
national Conference on Formal Methods and Models for Co-Design,
2006. MEMOCODE’06. Proceedings. IEEE Computer Society, 2006,
pp. 71–80.

[20] Y. T. Chang and K. T. T. Cheng, “Induction-based gate-level verification
of multipliers,” in Proceedings of the 2001 IEEE/ACM international
conference on Computer-aided design. IEEE Press, 2001, pp. 190–
193.

[21] S. Ghandali, C. Yu, D. Liu, W. Brown, and M. Ciesielski, “Logic
debugging of arithmetic circuits,” in 2015 IEEE Computer Society
Annual Symposium on VLSI. IEEE, 2015, pp. 113–118.

[22] X. Sun, P. Kalla, T. Pruss, and F. Enescu, “Formal verification of
sequential galois field arithmetic circuits using algebraic geometry,”
in Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition. EDA Consortium, 2015, pp. 1623–1628.

[23] B. Buchberger, “A criterion for detecting unnecessary reductions in the
construction of gröbner-bases,” in Symbolic and algebraic computation.
Springer, 1979, pp. 3–21.

[24] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

