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Abstract—The security of a system-on-chip (SoC) can be
compromised by exploiting the vulnerabilities of the finite state
machines (FSMs) in the SoC controller modules through fault
injection attacks. These vulnerabilities may be unintentionally
introduced by traditional FSM design practices or by CAD
tools during synthesis. In this paper, we first analyze how the
vulnerabilities in an FSM can be exploited by fault injection
attacks. Then, we propose a security-aware FSM design flow
for ASIC designs to mitigate them and prevent fault attacks on
FSM. Our proposed FSM design flow starts with a security-
aware encoding scheme which makes the FSM resilient against
fault attacks. However, the vulnerabilities introduced by the CAD
tools cannot be addressed by encoding schemes alone. To analyze
for such vulnerabilities, we develop a novel technique named
Analyzing Vulnerabilities in FSM (AVFSM). If any vulnerability
exists, we propose a secure FSM architecture to address the issue.
In this paper, we mainly focus on setup-time violation based
fault attacks which pose a serious threat on FSMs; though our
proposed flow works for advanced laser-based fault attacks as
well. We compare our proposed secure FSM design flow with
traditional FSM design practices in terms of cost, performance,
and security. We show that our FSM design flow ensures security
while having a negligible impact on cost and performance.

Index Terms—FSM Integrity Analysis, Fault Injection Attacks,
Security Design Rules, Secure FSM Architecture

I. INTRODUCTION

Different hardware-based attacks, e.g., side channel attacks
using power and timing analysis, exploitation of test and debug
structures, and fault injection attacks have been demonstrated
to compromise the security of a system-on-chip (SoC). These
attacks can effectively bypass the security mechanisms built
in the software level and put systems at risk. Among these
attacks, fault injection poses a particularly serious threat.
During fault attacks, an attacker injects faults to produce
erroneous results and then analyzes these results to extract
secret information from a SoC [1]. Over the past decade, fault
injection attacks have grown from a crypto-engineering curios-
ity to a systemic adversarial technique [2]. However, most of
the research on fault attacks are concentrated on analyzing the
fault effects and developing countermeasures for fault injection
on datapaths. Finite state machines (FSMs) in the control
path are also susceptible to fault injection attacks, and the
security of the overall SoC can be compromised if the FSMs
controlling the SoC are successfully attacked. For example,
it has been shown that the secret key of RSA encryption
algorithm can be detected when FSM implementation of the
Montgomery ladder algorithm is attacked using fault injection
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[3]. Therefore, it is also extremely important to understand
how fault injection attack works in an FSM and develop proper
countermeasures to protect against fault attacks.

Fault-tolerant FSM has been extensively studied for space-
based applications [4], [1]. The fault model used for such
applications is typically based on single fault event caused
by radiation. Since these faults are random, they do not
fit into threat model of fault injection attack caused by an
intelligent attacker who can precisely inject faults to exploit
FSM vulnerabilities. There are few works that try to identify
and address vulnerabilities of FSM to fault injection attack.
Authors in [3], [5], [6], [7] have proposed linear error detection
techniques (e.g., triple modular redundancy, parity prediction,
etc.) to protect the FSM from fault injection attacks. However,
the proposed techniques suffer from large area overhead (
v 200%) and assume specific error models that will not
work for other adversarial models [8]. As alternatives to linear
codes; nonlinear [9], multilinear [10] and multirobust [8] codes
have been proposed to improve the protection of cryptographic
devices against fault injection attacks. However, none of these
methods address the vulnerabilities introduced by synthesis
process, which makes them inadequate in protecting the FSM
from fault injection attacks.

It has been shown that synthesis tools can introduce security
risks in the implemented FSM by inserting additional don’t-
care states and transitions [11] [12]. Authors in [11] proposed
architectural changes in the FSM to address the vulnerabilities
introduced by don’t-care states and transitions. Here, a mod-
ified T flip-flop based design which prevents normal states
to access protected states (states which grant critical/secure
functionality) was proposed. However, this solution fails to
provide adequate protection against fault injection attack as
it does not address the unauthorized state transition between
protected states. Moreover, this architecture has adverse effects
on timing, test coverage, and verification (e.g., equivalence
checking) and therefore, is not suitable for industrial ASIC
design flow.

In this paper, we propose a security-aware FSM design flow
for ASIC designs to make the FSM fully secured against
fault injection attacks. Our proposed flow introduces three
additional steps into the current FSM design flow: (1) security-
aware encoding of state assignments, (2) vulnerability analy-
sis of synthesized FSM, and (3) security-aware architecture
development for FSM design. An overview of our proposed
security-aware FSM design flow is shown in Figure 1. Note
that, the security-aware FSM architecture needs to be applied
only when the security vulnerabilities cannot be addressed by
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Fig. 1: Security-aware FSM design flow. The violet marked
steps are the three additional steps introduced in the current
FSM design flow by our approach. The dotted line represents
that the security-aware FSM architecture needs to be applied
only when the security vulnerabilities cannot be addressed by
the security-aware encoding scheme.

the security-aware encoding scheme.
We make following major contributions:
• We investigate the traditional FSM design practices and

demonstrate that these design practices (e.g., encoding
schemes) can introduce vulnerabilities in the FSM. To
the best of our knowledge, this is the first time that the
security of different encoding schemes (binary, one-hot,
and gray) have been examined and compared.

• We investigate the error detection based fault tolerant
FSM architectures and demonstrate with experimental
results that these approaches cannot provide adequate
protection to FSMs against fault injection attacks.

• We propose two security-aware FSM encoding schemes;
one based on securing protected states and the second
based on securing protected transitions. The elegance of
our proposed encoding schemes is that they inherently
make the FSM more resistant to fault attacks without
the need of any extra circuitry. This differentiates our
proposed schemes from error detection-based approaches
that require complex logic for detecting errors. We also
validate with experimental results that most security vul-
nerabilities can be addressed by our proposed encoding
schemes.

• We propose a technique, called Analyzing Vulnerabilities
in FSM (AVFSM) to quantitatively analyze and evaluate
how susceptible an FSM design is against fault injection
attacks. To the best of our knowledge, this is the first sys-
tematic approach to analyze such vulnerabilities present
in an FSM.

• We propose a security-aware FSM architecture to address
the vulnerabilities introduced by the synthesis process
(these vulnerabilities are detected using AVFSM ap-
proach) and to protect the FSM from advanced laser-
based fault injection attacks.

• We demonstrate potential vulnerabilities to fault attacks in
five controller benchmark circuits. We also compare our
proposed security-aware FSM design flow with traditional
FSM design practices in terms of security, cost, and
performance.

The remainder of the paper is organized as follows. Sec-
tion II provides a background on fault tolerant FSM design.
Section III presents preliminaries and definitions that we use
in this paper. Section IV shows how fault injection attack
can be performed against FSMs using a motivational example.

Section V presents our threat model. Section VI presents the
vulnerabilities introduced by traditional and error detection
code (EDC) based FSM design practices. Section VII discusses
our proposed security-aware FSM design flow. Section VIII
presents our results. Finally, Section IX concludes the paper.

II. RELATED WORK

Sunar et al. [3] has proposed linear error detection tech-
niques to protect the FSM from fault injection attacks. How-
ever, as described in Section VI-A, linear EDC based tech-
niques do not take into account the non-uniform path delay
distribution of a FSM or the vulnerabilities introduced by
synthesis tools and therefore, are susceptible to fault injection
attacks. We demonstrated with experimental results in Section
VIII-D that these techniques are vulnerable to set-up time
violation based fault injection attack.

Karpovsky et al. [13] proposed nonlinear error detection
codes to minimize the fraction of undetectable errors. Contrary
to linear codes, the error detection probability of nonlinear
codes is dependent on state encoding. Therefore, if an ad-
versary knows the states of FSM then, he/she can compute
an undetectable error pattern and inject an undetectable fault.
Thus, the security of this coding scheme mainly depends on
the assumption that the attacker cannot observe the next state
values of the FSM in the same clock cycle as fault injection
[3]. However, this assumption is not valid as an attacker can
make intelligent guess about the next state for a particular
FSM. For example, in the AES controller FSM (see Section
VIII-A), an attacker can guess the Initial Round’ and Final
Round’ by observing when the encryption module loads the
input plaintext and when the output ciphertext in available.

Kahraman et al. [14] proposed to address the limitations
of applying non-linear codes in FSM by embedding random-
ization to achieve unpredictability and uniformity. Although it
can provide some guarantee to detect fault injection attacks,
the following challenges exist in their approach,
• It may require impractical area and delay overhead for

many applications (see Section VIII-E).
• It requires the implementation of a tamper-proof clock

and random number generator [15]. These requirements
are quite challenging and expensive to meet when con-
sidering the fact that the attacker has physical access to
the device.

• It essentially push the security threat from the FSMs to
the decoder circuit which generates control signals based
on the current state and requires visibility of the state.
Therefore, the bare form of the state and output control
signals become vulnerable points for possible attacks
[16].

III. PRELIMINARIES AND DEFINITIONS

An FSM is formally defined as a 5-tuple (S, I,O, ϕ, λ),
where S is a finite set of states, I is a finite set of input
symbols, O is a finite set of output symbols, ϕ : S × I → S
is the next-state function and λ : S × I → O is the output
function.
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Fig. 2: (a) High-level diagram of SHA-256, (b) FSM of SHA-
256 digest engine. The red marked states represent protected
states of SHA-256 FSM.

For convenience, an FSM is typically represented as a
directed graph where each vertex represents a state s ∈ S and
an edge represents the transition t = T (si, sj) from current
state si to its next state sj . This graph is referred to as a
state transition graph (STG). In the STG each state can be
accessed from a set of states which we define as the accessible
set of states,

A(x) = {sj | sj is accessible from si} (1)

In this paper, we define two more sets, P and L, which are
both specified by the designer. P is the set of protected states
and L is a set of authorized states that are allowed to access a
protected state p, that is A(L) = {p | p ∈ P}. If any state p is
accessed by any state apart from states in L, then the security
of the FSM can be compromised.

In the behavioral specification of the FSM, there are don’t-
care conditions where the next state or the output of a
transition are not specified. During the synthesis process, the
synthesis tool tries to optimize the design by introducing de-
terministic states and transitions for the don’t-care conditions.
Let us consider the FSM F ′ implemented by the synthesis
tool from the behavioral description of the FSM F . Let, S and
S′ represent the set of states and T and T ′ represent the set
of transitions in F and F ′, respectively. The set of don’t-care
states and transitions (SD and TD) introduced by the synthesis
process are defined as follows,

SD = {s′ |( s′ ∈ S′) ∩ (s′ /∈ S)}
TD = {t′ | (t′ ∈ T ′) ∩ (t′ /∈ T )}

(2)

Table I presents the symbols and notations that we use
throughout this paper.

IV. MOTIVATING EXAMPLE

In this section, we explore the possible fault injection attacks
against an FSM and show how these attacks can compromise
the security of the overall system. We use the controller circuit
of a SHA-256 digest engine [17] as an example to demonstrate
the feasibility and effectiveness of fault attacks. The FSM in

TABLE I: Symbols and notations
Symbols Definitions Symbols Definitions
P set of protected states V T vulnerable transitions
L set of authorized states PathFS(i) maximum path delay of ith state FF
SD set of don’t-care states SF susceptibility factor
TD set of don’t-care transitions PV T percentage of vulnerable transitions
FFS state flip-flop (FF) ASF average susceptibility factor
SEN state encoding V FFI vulnerability factor of fault injection

the controller circuit of SHA-256 digest engine is shown in
Fig. 2(b). The FSM is composed of 7 states: ‘Reset’, ‘Data
Input’, ‘Padding’, ‘Block Process’, ‘Block Next’, ‘Valid’, and
‘Error’. Each of these states controls specific operations in
the SHA-256 digest engine. The digest algorithm operates
on two registers, w[0..64] which is responsible for loading
the message and h[0..7] which stores the intermediate digest
results. These two registers are initialized during ‘Reset’ state.
The final digest (H) will be latched into the result register
in ‘Valid’ state. In our SHA-256 FSM example, ‘Valid’ is
a protected state and ‘Block Next’ is the authorized state to
access the protected state ‘Valid’.

If an attacker can successfully inject a fault in the FSM to
get access to specific states without going through the valid
state transitions, it can compromise the security of the SHA-
256 digest engine. We will demonstrate two such attacks in
the following,
• During the ‘Data Input’ state, the message M is loaded

to register w[0..15]. These values are used in a sub-
sequent operation to compute w[16..63], h[0..7], and
digest H . Therefore, if an attacker can inject fault to
bypass ‘Data Input’ state, then M will not be loaded
into register w[0..15]. Therefore, H will be computed
from the initialized value of w[0..15]. The outcome of
this attack would be the same hash value as computed
for any message. This attack would compromise the
collision resistance property [18] of the digest engine
i.e., for any two different messages m1 and m2, their
hash value would be same, hash(m1) = hash(m2). A
digital signature algorithm based on hash functions are
particularly vulnerable to hash collision attacks. In [19],
authors have used a hash collision attack to produce a
rogue certificate authority.

• When the hash value of the last message block is cal-
culated, the FSM moves to ‘Valid’ state and the digest
value H is captured by the result registers. Now, if an
attacker can inject fault to bypass ‘Block Process’ and/or
‘Block Next’ states, then instead of H , initial values
of h[0..7] would be captured by the result registers and
would be published as the digest value. This attack would
compromise both the pre-image resistance [18] and the
collision resistance property of the digest engine. A suc-
cessful execution of this attack would allow the adversary
to bypass the authentication mechanism provided by the
digest engine.

V. THREAT MODEL

In this section, we identify how the vulnerabilities are
introduced in the FSM and how these vulnerabilities can
be exploited to compromise the security of a SoC. We also
briefly describe the potential adversaries, their objectives, and
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their capabilities. In our threat model, we have considered
fault injection attacks which create multiple bit flips and also
considered fault attacks performed by a focused laser beam.
Sources of Vulnerabilities: Most security vulnerabilities in an
FSM are unintentionally created by designer mistakes or by
CAD tools. Traditional FSM design practices are driven by
cost and performance while security is largely ignored. For
example, FSMs are generally encoded in binary, gray or one-
hot from the performance perspective. In [12], it was shown
that certain encoding schemes are more susceptible to fault
injection attacks. Further, CAD tools can create additional vul-
nerabilities in an FSM. For example, in the RTL specification
of an FSM, there are don’t-care conditions where the next
state or the output of a state is not specified. Synthesis tools
optimize the FSM design by introducing deterministic states
and transitions for don’t-care conditions. This can create a
vulnerability in the circuit by allowing a protected state to
be illegally accessed through the don’t-care states (SD) and
transitions (TD).
Fault Injection Attack on FSM: In this paper, we focus
on setup-time violation-based fault attack. This attack violates
the setup time constraint of state flip-flops (FFs) to bypass
a normal state transition and enter a protected state. Setup
time violations can be performed by different fault injection
methods, including overclocking, reducing the voltage, and/or
heating the device [20]. These types of attacks pose the
most serious threat to an FSM as they require relatively low-
cost equipment and do not necessarily need the complete
knowledge of the FSM design.

We illustrate the working principle of setup-time violation-
based fault attack using the example of the FSM of SHA-
256 digest engine (shown in Fig. 2). Fig. 3(a) shows the
distribution of path delays located in the fan-in cone of the
state FFs of SHA-256 FSM under normal operating condition.
The path delays were extracted using the static timing analysis
from the gate-level implementation of the FSM (using 90nm
standard cell library). The delay distribution is shown in the
form of box-plot. It is clear from Fig. 3(a) that the path delay
distribution to the state FFs is non-uniform, meaning that it is
possible to inject fault that violates setup-time of certain FFs
(ones with longer path delay) while maintaining setup-time
of other FFs (ones with shorter path delay). Such attacks are
termed as biased fault attack [21]. For example, when the FSM
is operating with the clock period (Tclk) of Tclk > 2.25ns,
no setup-time violation occurs in any state FF. However, the
setup-time of state FF1 can be violated by operating the FSM
with 2.05ns < Tclk < 2.25ns (1-bit fault region shown by
green marked area in Fig. 3(a)). If Tclk is further reduced
(1.70ns < Tclk < 2.05ns), then setup-time of both state FF1
and FF0 will be violated (2-bit fault region shown by purple
marked area in Fig. 3(a)).

In some cases, e.g., in embedded systems, an attacker may
not have control over the clock signal. In such cases, the
attacker can reduce the supply voltage and/or increase the
temperature of the circuit to perform setup-time violation-
based fault attack. Fig. 3(b) shows the distribution of path
delays located in the fan-in cone of the state FFs of SHA-
256 FSM for low voltage corner condition. If we consider the
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Fig. 3: (a) The distribution of path delays located in the fan-in
cone of the state FFs of SHA-256 FSM under normal operating
condition. (b) The distribution of path delays located in the
fan-in cone of the state FFs of SHA-256 FSM for low voltage
corner condition. The green and purple marked areas represent
the 1-bit and 2-bit fault regions, respectively.

operating clock period to be 2.5ns, then under low voltage
condition the setup-time of both state FF1 and FF0 will be
violated. This is shown in 2-bit fault region shown by purple
marked area in Fig. 3(b). Therefore, biased fault attack can also
be performed by reducing the supply voltage and/or increasing
the operating temperature.

In summary, the non-uniform path delay distribution of an
FSM enables an attacker to violate setup-time of certain FFs
while maintaining setup-time of other FFs. Thereby allowing
the attacker to bypass normal state transitions and get access
to a protected state directly. Note that, it is also not feasible to
equalize the non-uniform path delay distribution of an FSM
using the limited sizes of buffer offered by a standard cell
library.

It is also possible to induce faults to flip bits in sections of
a circuit with a precisely focused laser beam. Although such
fault injection techniques require expensive equipment as well
as knowledge of the FSM design, our threat model takes such
attacks also into consideration. Note that our threat model does
not consider the fault attack scenario where an attacker can
individually set or reset a single FF without affecting any other
gates. Such, attacks are only possible through focused ion
beam (FIB) and those are out of scope of this work. The reason
is that, an attacker with FIB capability would directly probe
the design to extract secret information rather than inducing
fault to cause information leakage.

Potential Adversaries: For this threat model, we assume the
adversary has physical access to the device. The adversary
can thereby manipulate the clock signal, supply voltage, or
operating temperature of the FSM. This model is realistic for
stolen devices and systems or in the case of smart cards where
clock and voltage may be supplied by a malicious reader.
Based on the capabilities of the adversaries, we divide them
into two adversarial categories,
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TABLE II: Different encoding scheme for SHA-256 FSM.

States Reset Data Block Block Padding Valid Error
Input Process Next

Binary 000 001 010 011 100 101 110
One-hot 0000001 0000010 0000100 0001000 0010000 0100000 1000000

Hamming (7,4) 1110000 1101001 0101010 1000011 1001100 0100101 0001111

• Strong adversarial model: Here, the attacker knows the
state encoding and functionality of the FSM and there-
fore, can mount precise glitching attacks [21]. The at-
tacker can obtain this information from an insider, by
espionage, or by reverse engineering. These adversaries
can also mount precise laser-based fault attack. Although
this class of attacks is less likely, they pose a greater
threat as they allow one to precisely inject fault to gain
access to a protected state.

• Weak adversarial model: In this case, the attacker does
not know the state encoding nor the functionality of the
FSM. Here, the attacker will try to inject random faults
in the FSM in the hope of gaining access to a protected
state. Although these attacks pose a less serious threat,
they are more likely to be performed.

VI. LIMITATIONS IN EXISTING FSM DESIGN FLOW

In this section, we describe how vulnerabilities are intro-
duced by traditional FSM encoding schemes. We also present
the limitations of error detection code (EDC) based approaches
in protecting the FSM from fault attack.

A. Traditional FSM Encoding Practices

Encoding the state assignments in FSMs is traditionally
done based on design constraints such as area, power, and
delay. Designers generally choose between binary, one-hot,
and gray encoding to encode the FSMs. None of these en-
coding schemes take security into consideration and thereby,
can introduce vulnerabilities in the FSM. In this section,
we compare traditional encoding styles from security and
performance points of view.
Binary Encoding: In binary encoding scheme, states are
encoded as a binary sequence where the states are num-
bered starting from 0 and up. The number of state flip-flops
(FFS), q, required for binary encoding scheme is given by
q = log2(n); where, n is the number of states. From this
equation, it is evident that binary encoding scheme requires
minimum number of state FFs. Binary encoding scheme en-
sures maximum utilization of state FFs, but it requires complex
combinational logic for decoding each state. Therefore, binary
encoding scheme is better suited for FSM with a fewer number
of states [22]. However, in terms of security, the binary
encoding scheme makes the FSM more susceptible to fault
injection attack. We demonstrate this vulnerability using the
FSM of the SHA-256 digest engine.

The binary encoding for SHA-256 FSM is shown in Table
II. One possible attack is shown in Fig. 4(a). During state
transition from ‘Padding’ (100) to ‘Block Process’ (010), it is
possible to inject fault and bump into protected state ‘Valid’
(110). To successfully inject this fault, the attacker needs to
violate setup time of state FF2 (the leftmost bit, representing
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Fig. 4: Fault injection attack on the FSM of SHA-256 digest
engine. Parts (a), (b) and (c) illustrate the fault injection attack
on FSM encoded in binary, one-hot and Hamming code (7, 4),
respectively. The red marked bits represent the state FFs for
which setup time needs to be violated and the green marked
bits represent the state FFs for which setup time needs to be
maintained.

FF2, is marked in red in Fig. 4(a)) while maintaining setup-
time of state FF1 (the middle bit, representing FF1, is marked
in green in Fig. 4(a)).
One-hot Encoding: In one-hot encoding, only one bit of the
state variable is ‘1’ while all other state bits are zero. One-
hot encoding requires as many state FFs as the number of
states, and therefore, one-hot encoding requires more state
FFs than binary. However, one-hot encoding possesses simpler
combinational logic for decoding each state and, therefore, is
more suitable for FSMs with more states. From the security
perspective, it is also inherently less vulnerable to fault attacks.
We will demonstrate this using the FSM of the SHA-256 digest
engine. The one-hot encoding for SHA-256 FSM is shown in
Table II. During state transition from ‘Padding’ (0010000) to
‘Block Process’ (0000100), it is not possible to inject faults
and bump into protected state ‘Valid’ (0100000). The reason is
that in order to go to ‘Valid’ state, the state FF(6) needs to be
‘1’; however, during the other state transitions, this bit remains
unchanged as this bit is dedicated for ‘Valid’ state. Therefore
setup-time violation based fault attack cannot be applied to
change state FF(6) bit to ‘1’. This property makes the one-hot
encoding inherently more secure against fault attacks.

Note that, one-hot encoding could result in many don’t-care
states. If any of these don’t-care states has access to a protected
state as a result of synthesis, then there will be a vulnerability
in the FSM. For example, as shown in Fig. 4(b), the don’t-care
state ‘0000000’ has access to ‘Valid’ state. Therefore, during
state transition from ‘Padding’ to ‘Block Process’, an attacker
can inject a fault to bump into the don’t-care state and then
access the ‘Valid’ state. Hence, there can still be vulnerabilities
even in one-hot encoded FSMs.

Note that gray encoding is also used in traditional FSM
design. Gray encoding has similar security characteristics to
binary encoding scheme and therefore, we did not elaborate
on gray encoding scheme.

B. EDC Based Approaches

Previously proposed fault tolerant FSM architectures [3],
[5] are based on linear error detection code (EDC). The basic
idea of these approaches is to encode the FSM’s state using
error detection codes and then detect any fault by checking
the parity bits. Linear error detection codes are denoted as
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[n, k, d] where n is the code length, k is the message length
and d is the minimum Hamming distance between any two
code words. A linear error detection code can detect up to
d− 1 errors. Authors in [3], [5] assumed that the EDC based
approach would force the attacker to be very precise when
changing certain bits; otherwise the attack would be detected.
Therefore, flipping multiple targeted bits without changing
other bits would be a daunting task.

The main limitations of EDC based approaches are: (i)
these approaches do not take into account biased fault model
which allows an attacker to exploit the non-uniform path
delay distribution of an FSM to inject multiple bit flips, (ii)
none of the EDC based approaches address the vulnerabilities
introduced by the synthesis tool. We illustrate these limitations
by applying an EDC scheme on our SHA-256 FSM. Here, we
use the Hamming (7,4) error detection approach [23], though
any EDC based approach will share the same limitations.

The Hamming (7,4) encoding for SHA-256 FSM is shown
in Table II. Note that, there are 16 valid states in Hamming
(7,4) code; however, only 7 are used to encode SHA-256
FSM. Therefore, there are 9 valid don’t-care states which may
pose a threat as these states can bypass the error detection
mechanism. We illustrate the limitation of Hamming (7,4)
code using the following two examples. During state transition
from ‘Reset’ (1110000) to ‘Error’ (0001111), it is possible to
inject fault and bump into protected state ‘Valid’ (10100101).
To successfully inject this fault, the attacker needs to violate
setup time of state FF(1), FF(3) and FF(5) (marked in red
in Fig. 4(c)) while maintaining setup-time of rest of the
state FFs (marked in green in Fig. 4(c)). Also, during this
transition, one can inject a fault to bump into the valid don’t-
care state ‘0110011’ and, if this don’t-care state has access
to ‘Valid’ state, then it is a security vulnerability. The above
examples illustrate that the EDC based approaches cannot
provide adequate protection to FSMs against fault injection
attacks.

VII. SECURITY-AWARE FSM DESIGN FLOW

An overview of our proposed security-aware FSM design
flow to protect the FSM is shown in Figure 1. Our proposed
flow starts with designing the FSM RTL with security-aware
encoding. We propose two encoding schemes which make the
FSM inherently fault tolerant with little or no additional cost
and performance overhead. However, these encoding schemes
cannot address the vulnerabilities introduced by the synthe-
sis process and cannot provide protection against advanced
laser-based fault attacks. We analyze the synthesized FSM
netlist for potential vulnerabilities using our proposed AVFSM
technique. If any vulnerabilities exist or protection against
laser-based fault attacks is required, we propose a security-
aware FSM architecture to mitigate them. Our proposed FSM
architecture ensures that protected states are only accessed
from authorized states and they cannot be accessed via unau-
thorized states and don’t-care states. Therefore, our proposed
FSM architecture provides protection against laser-based fault
attacks and also addresses the vulnerabilities introduced by
CAD tools.

Algorithm 1 Secure Encoding - Scheme I
1: procedure
2: Input: Protected States P, Normal States N, Initial State I
3: Output: FSM Encoding Map, SEN
4: P ← |P|, N ← |N|
5: l = P + log(N) // Encoding Bit Length
6: for Pi ∈ P do
7: Ei = OneHotEncoding(i, P )||(00..0)l−p // concat (l-p) zeros

with one-hot encoding
8: SEN .add(Pi, Ei)
9: end for

10: for Ni ∈ N do
11: Ei = binaryEncoding(i, N)||(00..0)l−N)

12: SEN .add(Ni, Ei)
13: end for
14: SEN .add(I, (00..0)l) // initial state
15: return SEN
16: end procedure

A. Security-aware FSM Encoding

In this section, we present two security-aware FSM en-
coding techniques. The first approach (Scheme I) is based
on a conservative model where we make the protected states
resilient to fault attack during all transition. However, fault
injection during certain transitions may not create any security
issues. In our second approach, we make the protected states
resilient to fault attack during state transitions which cause
security concerns.
Scheme I: One-hot encoding is more resilient to fault in-
jection attacks in comparison with other encoding styles as
discussed in Section VI-A. Our first encoding scheme exploits
the benefits of one-hot style while reducing the number of
don’t-care states. Algorithm 1 shows the proposed encoding.
The algorithm takes as input from the designer, the states
specified as three different categories: the initial state, normal
states, and protected states. Our primary goal is to make the
protected states more resilient against fault attacks. Therefore,
the algorithm uses one-hot scheme for protected states while
it uses binary scheme for normal states. If the FSM contains
one initial state, N normal states and P protected states, the
algorithm uses log(N) + P bits for encoding (line 5). The
algorithm dedicates P upper bits to one-hot scheme while it
pads zero for the rest of log(N) bits in order to encode a pro-
tected state (lines 7-9). To encode a normal state, the algorithm
pads zero for the N upper bits and uses binary encoding for
log(N) lower bits (lines 10-12). It always encodes the initial
state with all zeros (line 13). This encoding approach decreases
the number of don’t-care states (as compared to one-hot) while
making sure that it will be impossible for an attacker to access
to a protected state from a normal state with fault attacks since
during normal state transitions, P upper bits are fixed to zeros.
Example 1: The FSM shown in Figure 2(b) can be encoded
with Algorithm 1 as following: Reset=“00000”, Block Pro-
cess=“00001”, Block Next=“00010”, Padding=“00011”, Er-
ror=“00100”, Data Input=“01000”, Valid=“10000”.
Scheme II: Note that, every access to a protected state from
an unauthorized state does not necessarily introduce a security
threat based on the attack objective. For example, it can be
observed from Figure 2(b) that an unauthorized access to Data
Input state from Block Process may not be a security threat
if the attacker’s objective is to bypass the digest operation.
In other words, an FSM may be secured against fault attacks
if the state encoding provides protection for only prohibited
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Algorithm 2 Secure Encoding - Scheme II
1: procedure
2: Input: State Names S, Initial State I , Prohibited Transitions T
3: Output: FSM Encoding Map, SEN
4: for log(N) ≤ l ≤ N − 1 do
5: for all of possible combinations do
6: SEN = {}
7: SEN .add(I, (00..0)l) // initial state
8: SEN = findEncoding(S, l) // random encoding with length l
9: for Ti ∈ T do

10: m=generateMask(SEN .get(src(Ti)), SEN .get(dest(Ti)))
11: for prohibited states ti of Ti do
12: checkForConflicts(SEN .get(ti), m);
13: end for
14: end for
15: if (There is no conflict) then
16: return SEN
17: end if
18: end for
19: end for
20: end procedure

transitions instead of every transition to the protected states.
This property enables us to introduce another FSM encoding
scheme which is similar to binary scheme, but also tries
to reduce the number of don’t-care states that exist in the
previously proposed encoding (Algorithm 1).

Algorithm 2 shows the second proposed encoding approach.
The algorithm takes an initial state, state names, and a list of
the prohibited transitions as inputs and generates an optimal
length encoding as output. A list of prohibited transitions
includes state(s) that should be prohibited during a transition
from state u to v using fault attacks. Moreover, it can contain
information about which transitions should not be bypassed.
If there are n states, the algorithm searches different encoding
lengths (l) where log(n) ≤ l ≤ n − 1 and tries almost all
of the combinations to find a secure encoding (lines 4-8). The
goal is to find an encoding that does not have any conflict with
the list of prohibited transitions. The initial state is encoded
with all zeros. To check whether an attacker can inject a
fault during a transition from state u to v and gain access
to state t, a mask is generated from the temporary encodings
of states u and v to identify which bits have changed during
this transition (line 10). The changed bits are marked with
‘x’ and the fixed bits are kept as they are in the generated
mask (e.g., “0101” → “1001” : mask = “xx01”). The
encoding of state t is compared with the generated mask.
If the encoding has one-bit difference from the fixed bits of
the mask, the temporary assignment is safe (since reaching
to t requires changes in the fixed bits of transition u → v).
Otherwise, the assigned encodings are not safe and another
combination should be tried (lines 11-12). The algorithm
returns an encoding as a result when there is no conflict
with the list of prohibited transitions (lines 13-14). Note
that we also employ some heuristics to efficiently reduce the
computation cost of the algorithm (e.g., using one-hot scheme
in l bits and assign it to l states to limit the search space).
If there is an optimal encoding, this algorithm will find it. In
the worst case, it uses one-hot scheme for all of the states
except the initial state like the previous approach. However,
this approach requires more inputs from the designer.

Example 2: Using Algorithm 2, the FSM shown in Figure 2
can be encoded as: Reset=“0000”, Block Process=“1000”,
Block Next=“0100”, Padding=“0010”, Error=“0111”, Data

Algorithm 3 State Transition Graph Extraction
1: procedure
2: Input: Gate-level netlist of the FSM, FSM synthesis report
3: Output: STG Modified netlist for ATPG-based FSM extraction
4: FFS ← Identify state FFs
5: SEN ← Get state encoding
6: NM ← Produce the modified netlist
7: for each s ∈ SEN do
8: Apply the logical value of s as constraint on PIXOR
9: Remove all faults and add stuck-at-1 fault at POOR

10: Generate ATPG patterns n times
11: Extract the present state values and conditions
12: end for
13: end for
14: end procedure
15: end procedure

Input=“0001”, Valid=“1110”.

B. AVFSM: FSM Vulnerability Analysis

Our proposed security-aware FSM encoding schemes inher-
ently make the FSM more resistant to fault attacks without the
need of any extra circuitry. However, our proposed encoding
schemes do not address the vulnerabilities introduced by the
synthesis process (after state encoding assignments). For ex-
ample, synthesis tools can introduce don’t-care states that have
access to the protected states (as shown in Fig. 4(b)), allowing
the attacker to access the protected states via these don’t-care
states. Also, an attacker can use a precise laser beam to induce
bit flips causing the FSM to go to a protected state from
an unauthorized state. This type of advanced fault injection
attacks cannot be mitigated through our encoding schemes.
In order to check whether there is any FSM security concern
introduced after synthesis, we propose an FSM Vulnerability
Analysis Framework (AVFSM).

Our proposed AVFSM takes as input (i) gate-level netlist
of the design, (ii) FSM synthesis report, and (iii) user given
inputs. AVFSM then extracts the STG of the FSM from the
gate-level netlist and reports a quantitative measure of the vul-
nerability of FSM to fault injection attack. These procedures
are discussed in details in the following subsections.

Extraction of STG: To analyze vulnerabilities in the FSM, we
first need to extract the STG from the synthesized gate-level
netlist. The extracted STG must incorporate the don’t-care
states and transitions which were introduced by the synthesis
process. Existing work in literature only focuses on FSM
reverse engineering from gate-level netlist [24], [25]. However,
none of these techniques can extract the STG with the don’t-
care states and transitions.

One straightforward approach would be to perform a func-
tional simulation of the FSM with all possible input patterns
and produce the STG. However, this technique also cannot
extract the don’t-care states and transitions as these don’t-care
states cannot be accessed under the normal operating condi-
tions of the FSM. It is because the synthesis tool introduces
these don’t-care states in such a way that these states cannot
be accessed from the normal states (states mentioned in the
RTL code); otherwise the original functionality of the FSM
will be altered.

We propose an automatic test pattern generation (ATPG)
based FSM extraction technique which can produce the STG
with the don’t-care state and transitions from the synthesized
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netlist. Our proposed extraction technique takes the gate-
level netlist and the FSM synthesis report as inputs, and
automatically generates the STG. Here, our assumption is that
this vulnerability analysis will be performed by the designer,
who has access to the RTL code, gate-level netlist, synthesis
report and therefore has knowledge of the FSM’s functionality.

The algorithm for STG extraction is shown in Algorithm
3. It first identifies the state flip-flops (FFS) using the FSM
synthesis report generated by the synthesis tool (procedure
I, line 4). In this work, we use the Synopsys dc shell’s
report fsm [26] command to generate the report. The report
contains names of the state registers (FFS) and the state
encoding information (SEN ). The naming of the registers is
conserved during the synthesis process and we can identify
the FFS using the FSM synthesis report.

After identifying the FFS , our algorithm searches if there
are any non-state FFs (FFNS) present in the input cone of
the FFS (see Fig. 5(a)). These non-state FFs are typically
counters and they influence the state transitions in the FSM.
We need to determine the logic values of the FFNS which
cause a transition in the STG.

Next, Algorithm 3 generates the modified netlist for the
ATPG analysis. The modified netlist is shown in Fig. 5(b) and
the original FSM is shown in Fig. 5(a). In the modified netlist,
the output nets of the FFS (defines the present state) and the
FFNS (defines conditions for state transition) are connected
as primary inputs, PIPS , and PIFFNS . Also, XOR gates are
placed at each input net of FFS , and the other input of the
XOR gate is connected as primary input, PIXOR. The output
pins of the XOR gates are ORed together, and the output pin of
the OR gate is added as primary output, POOR. This modified
netlist will be used to generate STG of the FSM.

Finally, Algorithm 3 determines the present states and input
conditions that cause a transition to a particular state s ∈ SEN .
The basic idea is to first apply the logical values of s as
constraints on PIXOR and generate test patterns for stuck-
at-1 fault at POOR (line 8-10). To generate patterns for this
fault, the ATPG tool must produce 0 at POOR which requires
the logic values at the input of the XOR gates to match with
the constraints (s) applied on PIXOR. In other words, the
ATPG tool will generate the logic values of present states
(PIPS) and input conditions (i.e., input pins of the FSM and
PIFFNS) which cause transitions to state s. We generate the
test patterns n number of times using Tetramax’s n-detect [26]
option to get all possible present states and input conditions
which cause a transition to s. Although this option does not
guarantee the generation of all possible patterns for a specific
fault, in our experiments we have verified that by specifying a
reasonably large value of n, we can extract the whole STG.

Vulnerability Analysis of Fault Attacks: In this section, we
use the extracted STG to analyze how susceptible the FSM is
to fault injection attacks. In our analysis, we consider the weak
adversarial model (see section V) where faults are injected
by violating the setup timing constraints using overclocking,
voltage starving, and/or heating the device [27]. These types of
attacks require low-cost equipment and pose the most serious
threat [28].

Fig. 5: (a) Original FSM (b) Modified FSM for ATPG-based
STG extraction.

Estimating the vulnerability of hardware cryptosystems
against timing violation attacks have been recently proposed
in [20]. However, their proposed technique can only be applied
to the data path and not to the FSM. Unlike data path, the
FSM presents some unique challenges in vulnerability analysis
of fault injection attacks (e.g., existence of don’t-care states
and transitions). Here, we propose a technique which analyzes
each transition of the STG and based on a proposed metric
quantitatively measures how susceptible that transition is to
a fault injection attack. Based on the result, AVFSM will
automatically report overall vulnerability measures of the FSM
to fault attacks.

Our vulnerability analysis is based on the observation shown
in Fig. 6. Let us consider the state transition T (00, 10) where
the current state is ′00′ and the next state is ′10′. During
this transition, one cannot perform time violation based fault
injection attacks to go to state ′01′ (see Fig. 6(a)). It is because
during T (00, 10), the LSB bit of both the current state and the
next state remains 0 and therefore, a setup time violation based
fault cannot be injected at this bit position to change the bit
value to 1. On the other hand during T (10, 01), one can inject
a fault to go to state ′11′ (see Fig. 6(b)). To successfully inject
this fault, the setup time constraint of MSB state FF needs to
be violated whereas the setup time constraint of LSB state
FF needs to be maintained. In other words, delay of the logic
path of MSB state FF needs to be greater than the delay of
the logic path of LSB state FF. We formulate these conditions
by C and SFT as shown in Algorithm 4.

To perform the fault vulnerability analysis, Algorithm 4
looks into each state transition of the extracted STG and
analyzes if a fault can be injected during this transition to gain
access to a protected state. It first computes the condition, C
(line 11) for each transition and if C == 1, then it considers
the respective transition as Vulnerable Transition, V T (line
12, 13). V T is defined as a set of transitions during which a
fault can be injected to gain access to a protected state. For
each V T , Algorithm 4 reports the conditions that need to be
satisfied to perform a setup time violation based fault attack
which are shown below,

00 10 

01 

10 01 

11 

(a) (b) 

Fig. 6: Setup time violation based fault injection attacks. Fault
injection is not possible in case of (a), whereas it is possible
in case of (b).
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Algorithm 4 Conditions for fault injection attack
1: procedure
2: Input: Extracted State Transition Graph
3: Input: set of protected state P // User given input
4: Output: Conditions for successful fault attacks
5: T (x, y)← Extracted STG
6: for each T (x, y) do // Transition from x to y
7: Sx = [bx(n−1).....bx1bx0] // Sx is state encoding of x
8: Sy = [by(n−1).....by1by0] // and b represents each bit of S
9: P = [bp(n−1).....bp1bp0]

10: Compute C =
∏(n−1)
i=0 ((bxi ⊕ byi)||(bxi ⊕ bpi))

11: if (C == 1) then
12: Fault attack possible for T (x, y)
13: V T (x, y)← T (x, y)
14: for i = 0 to (n− 1) do
15: if (bxi ⊕ byi) then
16: if (bxi == bpi) then
17: PVx,y(i) = {PFs(i)}
18: else
19: POx,y(i) = {PFs(i)}
20: end if
21: end if
22: end for
23: Compute SFT (x,y) =

min(PVx,y)−max(POx,y)

avg(PFS)

24: else
25: Fault attack not possible for T (x, y)
26: end if
27: end for
28: end procedure
29: end procedure

• Path Violated: Setup time constraints of the state FFs in
these paths need to be violated (line 17), i.e., PFs ≥
Clockperiod. The path delay of these state FFs are repre-
sented as PV .

• Path OK: Setup time constraints of the state FFs in
these paths need to be maintained (line 19), i.e., PFs <
Clockperiod. The path delay of these state FFs are repre-
sented as PO.

• Path No-Effect: State logic bit in this path does not
change during the transition and therefore, this path has
no impact on the vulnerability analysis.

Apart from the protected states, Algorithm 4 also considers
the don’t-care states that have access to the protected states
and reports the transitions as V T which can give access to
these don’t-care states. These don’t-care states are defined as
Dangerous Don’t-Care States (DDCS) and mathematically
can be represented as,

DDCS = {s′ | (A(s′) = P ) ∩ (s′ ∈ SD)} (3)

Now, each V T may not pose the same level of threat
to the implemented FSM. To quantify how susceptible
each V T is to fault injection attacks, Algorithm 4 uses
Synopsys′s Primetime tool [26] (for static timing analysis
(STA)) to get the maximum path delay of each state FFs. We
propose the susceptibility factor metric, SFT to quantitatively
measure the vulnerability of each transition to fault injection
attacks,

SFT =
min(PV )−max(PO)

avg(PFS)
, (4)

Here, avg(PFS) is calculated by taking the mean value of
all the PFS . min(PV ) is the minimum value of delays in
Path Violated, and max(PO) is the maximum value of delays
in Path OK. Now, if min(PV ) < max(PO), then SF is
negative. It means that the delay of a path in Path OK is higher

Fig. 7: (a) Security-aware FSM architecture. (b) Detailed
implementation strategy. A, P and R represents each bit of
‘Authorized’, ‘Protected’ and ‘Reset’ state.

than the delay of a path in Path Violated and fault injection
for this transition is not feasible in the implemented circuit.
Therefore, the transitions with negative SF is removed from
the set of vulnerable transitions V T .

We propose the following overall metric, vulnerability fac-
tor of fault injection (V FFI ) to measure the overall vulnera-
bility of the FSM to fault injection attacks. V FFI is defined
as follows:

V FFI = {PV T (%), ASF} (5)

where,

PV T (%) =

∑
V T∑
T
, ASF =

∑
SF∑
V T

The metric V FFI is composed of two parameters
{PV T (%), ASF}. PV T (%) indicates the percentage of num-
ber of vulnerable transitions (

∑
V T ) to total number tran-

sitions (
∑
T ), whereas ASF signifies the average of SF .

The greater the values of these two parameters are, the more
susceptible the FSM is to fault attacks. Note that we consider
the PFS to be normally distributed with the mean value
of maximum path delay (reported by STA) and a variance
value of 5% of avg(PathFS) to take into account of process
variation.

C. Security-aware FSM architecture

To address the security vulnerabilities identified by AVFSM,
we propose a security-aware FSM architecture to ensure that
protected states are only accessed from authorized states and
cannot be accessed from unauthorized states and don’t-care
states. Thereby, our proposed architecture can mitigate laser
and fault injection attacks, and also addresses the vulnerabil-
ities introduced by the don’t-care states. The security-aware
FSM architecture requires some additional circuitry that need
to be incorporated in the design at RTL level.
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The operation of FSM is as follows. During each state
transition, the next state logic bits appear at the input of the
state FFs. At the positive edge of the clock signal the present
state bits (output of the state FFs) are updated to the next state
logic values. Because a state transition occurs at every clock
edge, it does not provide any opportunity to analyze the next
and the present state and verify if the next state transition
is authorized. We propose to get around this limitation by
incorporating another set of state FFs along with a ‘secure
FSM logic’ and cascade it with the original FSM (see Figure 7
(a).

The ‘secure FSM logic’ implements the following function
and ensures that only the authorized states can access the
protected states.

if ((next state = Protected) and (present state /= Autho-
rized)) then

present state = Reset
else

present state = Protected
end if
Note that ‘secure FSM logic’ can have unbalanced and

non-uniform paths if we implement it using a synthesis tool.
Therefore, we custom design the ‘secure FSM logic’ so that
it has equal and uniform delay. The detailed implementation
is shown in Figure 7 (b). This implementation ensures that
all paths from ‘Next State’ to ‘Present State’ have nearly
uniform and equal delays. Also, the buffers in the architecture
ensure that signals from the next state FFs do not reach the
present state FFs before the secure FSM logic determines
whether the protected state is being accessed by the authorized
state. Therefore, an adversary can no longer exploit the non-
uniform path delay distribution to perform fault injection
attacks. Although, we try to make delays of all paths in secure
FSM logic to be uniform and equal, some non-uniformity will
be introduced by the process variation during the fabrication
process. However, the non-uniformity introduced by the pro-
cess variation would be much smaller and therefore, would be
extremely difficult for an attacker to exploit.

This architecture only adds one cycle latency but does not
affect the delay of the FSM which is desirable for most
controller circuits. The area overhead associated with our
proposed architecture is the extra set of state FFs and the
‘secure FSM logic’. Given the simple function implemented
by ‘secure FSM logic’, the associated area overhead is low (see
Section VIII-F). Also, our proposed technique does not require
any gate-level modification, making it feasible in practice.

VIII. RESULTS AND DISCUSSIONS

In this section, we evaluate our proposed secure FSM
design flow using five controller benchmark circuits. First,
we give a brief description of the five controller benchmark
circuits and illustrate how setup-time violation based fault
attack can be mounted on these benchmarks to compromise
their security. Then we present a case study using one of
these benchmarks (AES controller module) and show that our
proposed V FFI metric can effectively capture the probability
of successful fault injection attacks on controller circuit. We

also encode each benchmark circuit using traditional and
proposed encoding schemes, and compare their results in
terms of security, performance, and cost. Finally, we validate
our security-aware FSM architecture and analyze its area and
performance overhead.

All benchmark circuits of our experiemnts were synthesized
using Synopsys Design Compiler [26] with 180nm GSCLib
Library from Cadence. Note that, our framework is technology
independent and therefore, is compatible with any standard cell
library. Also note that, our flow is developed for ASIC designs.
Therefore, we verified our results through post synthesis
simulation using VCS.

A. Fault Attack on Controller Circuits

Here, we discuss how fault injection attacks on FSM can
compromise security using five controller benchmark circuits,
SHA-256, AES, memory controller, MIPS microprocessor, and
RSA (Montgomery ladder algorithm). All these benchmarks
are collected from OpenCores [17]. We have already presented
fault attacks on SHA-256 controller circuit in Section IV and
the rest are discussed below.
AES controller module: The FSM of AES controller circuit is
composed of 5 states: ‘Wait Key’, ‘Wait Data’, ‘Initial Round’,
‘Do Round’ and ‘Final Round’. During ‘Wait Data’ state,
the plaintext is loaded into the AES datapath while during
‘Initial Round’ and ‘Do Round’ states, ten rounds of AES
occur. After ten rounds, the ‘Final Round’ state is reached and
result is latched to the result registers. Two possible attacks
can be mounted against this controller circuit. If an attacker
can inject a fault and gain access to the ‘Final Round’ without
going through the ‘Initial Round’ and/or ‘Do Round’ states,
then premature results will be stored, potentially leaking the
secret key. If the ‘Wait Data’ state can be bypassed, the same
ciphertext will be generated for every plaintext resulting in
a DoS attack. Therefore, for this FSM we consider ‘Final
Round’ and ‘Wait Data’ as protected states.
Memory controller module: This module allows an external
bus master to access the memory bus if the external bus master
grants access through ‘mc gnt’ signal. We assume that the
host CPU authenticates the external bus master and asserts
‘mc gnt’ signal. The attacker’s objective would be to inject a
fault and bump into the state which allows access to memory
bus without going through the ‘mc gnt’ assertion.
MIPS microprocessor controller: This controller module
generates the control bits for the multiplexers, the data memory
and ALU control signals for the MIPS processor. It takes the
given opcode, as well as the function code from the instruction,
and translates it to the individual instruction control signals
which are needed for the remaining stages. The FSM of
this controller module includes memory read and write states
that can only be accessed by memory instructions. Here, we
assume that privilege control is implemented in software which
analyzes the memory instructions from user kernel and asserts
if it does not access memory locations which are dedicated to
system kernel. However, if an attacker can inject a fault during
non-memory instructions (e.g., add) and access the memory
read and/or write states, he/she can potentially bypass the
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privilege control protection and gain access to system memory
locations. Here, we consider the memory read and/or write
states as protected states.
RSA controller module: RSA controller module implement-
ing the Montgomery ladder algorithm presented in [3]. The
FSM of this controller module consists of 7 states, ‘Idle’,
‘Init’, ‘Load1’, ‘Load2’, ‘Multiply’, ‘Square’, ‘Result’. Here,
the attacker’s objective would be to bypass the intermediate
rounds of ‘Square’ and ‘Multiply’ states and access the ‘Re-
sult’ state to obtain either the key or premature result of RSA
encryption. Therefore, ‘Result’ is the protected state.

B. Case Study on AES

We apply our proposed AVFSM analysis on two imple-
mentations of AES encryption module’s controller circuit and
compare each implementation’s vulnerability. First, we have
used two different encoding schemes for the FSM of the AES
encryption module. We use { Wait Key, Wait Data, Initial
Round, Do Round, Final Round} = { 000, 001, 010, 011, 100}
and { Wait Key, Wait Data, Initial Round, Do Round, Final
Roun} = { 000, 100, 011, 101, 111} for schemes I and II,
respectively. We then synthesize each scheme with medium
area effort and apply the AVFSM analysis to evaluate the
vulnerabilities of each implemented FSM. Our analysis returns
the following assessment: V FFI = {0, 0} for scheme I and
V FFI = {23%, 0.38} for scheme II. As explained in Section
VII-B, a greater the value of V FFI represents the FSM to
be more vulnerable fault attacks. Therefore, we can expect
scheme II to be vulnerable to fault attack, whereas scheme I
is not.

We validate the AVFSM analysis by simulating a setup-
time violation based fault attack on scheme I and II. We
perform this simulated fault attack by increasing the clock
frequency to cause setup time violation. Note that, reducing
the voltage and/or increasing the temperature will have the
same effect. For scheme II, the fault attack causes the FSM
to bump to ‘Final Round’ without going through the round
operations, potentially leaking the key. This attack works as
follows, during the transition from ‘Wait Data’ (100) to ‘Initial
Round’ (011), the setup time of state FF(2) is violated while
the setup time of state FF(1) and state FF(0) is maintained.
Therefore, instead of going to ‘Initial Round’, the FSM bumps
to ‘Final Round’. When the ‘Final Round’ is reached, the
‘finished’ signal is asserted to 1 causing the expanded key
to be captured by the result register.

However, we were unable to induce a successful fault attack
on scheme I. This case study validates that our AVFSM
technique can correctly capture the probability of successful
fault injection attack.

C. Comparison of Different Encoding Schemes

We compare the security, cost and performance of our pro-
posed encoding schemes with traditional encoding schemes,
i.e., binary and one-hot on the benchmark controller circuits
described in Section VIII-A. We quantitatively analyze the
security of the FSMs using the V FFI metric. We utilize the

Design Compiler tool to obtain the area and the maximum
delay of each benchmark.

Table III summarizes all results. The area and delay shown
in columns 6 and 7 reflect the cost and performance (critical
path delay) of the controller circuit, respectively. Note that,
the controller circuit of SHA, AES and RSA contain FSMs
with less than 8 states. It may appear that our analysis
was performed on smaller benchmark circuits. Actually, most
implementations of cryptographic algorithms tend to have a
small number of states (based on our review of crypto designs
at opencore [17]). These crypto controller circuits would most
likely be targeted for fault attack. We also apply our analysis
on larger controller circuits, e.g., memory controller FSM
with 66 states to show the scalability and applicability of our
approach.

From Table III we can make the following important ob-
servations: (i) for all the benchmark circuits, binary encoding
makes the FSM vulnerable to fault attack. Also, the greater
value of V FFI for binary encoding reflects binary encoding-
based FSMs are more susceptible to faults attacks. (ii) One-
hot encoding requires more area for all the benchmark circuits;
though it is better compared to binary encoding from a security
perspective. (iii) Our proposed encoding schemes offer much
better security while having little or no cost and performance
overhead. (iv) Only in one benchmark FSM (MIPS micropro-
cessor), our proposed encoding schemes are vulnerable to fault
attack. These security vulnerabilities are created by synthesis
tools in the form of don’t-care states and the encoding schemes
cannot address these vulnerabilities as mentioned in Section
VII. For this FSM, we need to apply our proposed FSM
architecture to make it secure against fault attack. (v) Scheme
II has better cost and performance compared to Scheme I.
However, Scheme II requires more designer involvement and
therefore, may increase time-to-market w.r.t. to Scheme I.

D. Security and Cost of Linear EDC
We analyze the security and cost of linear EDC based

approaches using the benchmark controller circuits described
in Section VIII-A. We first encode the FSMs of AES, SHA
and RSA controller modules using Hamming (7,4) code and
encode the FSMs of MIPS micro-processor and memory

TABLE III: Results for Different FSM Encoding Schemes

Encoding # # state # Don’t Area Delay Security V FFI =

scheme states FFs -care states (µm2 ) (ns) concern? ASF, PV T

Binary 3 3 3068 0.62 Yes 0.23, 0.38
AES One-hot 5 5 27 4380 0.7 No 0, 0

Scheme I 4 11 3768 0.64 No 0, 0
Scheme II 3 3 3146 0.63 No 0, 0

Binary 3 1 4495 2.69 Yes 0.10, 0.35
SHA One-hot 7 7 121 6701 3.12 Yes 0.10, 0.07

Scheme I 4 9 5551 2.92 No 0, 0
Scheme II 3 1 4976 3.31 No 0, 0

Binary 5 13 9346 1.6 Yes 0.42, 0.09
MIPS One-hot 19 19 5.2e3 19816 1.52 Yes 0.26, 0.07

Processor Scheme I 9 496 12357 1.55 Yes 0.08, 0.003
Scheme II 5 13 9330 1.58 Yes 0.11, 0.06

Binary 7 62 60039 1.47 Yes 0.09, 0.01
Memory One-hot 66 66 7.3e19 68904 1.45 No 0, 0
Contrl. Scheme I 8 190 57624 1.54 No 0, 0

Scheme II 8 190 57624 1.54 No 0, 0
Binary 3 1 3099 0.55 Yes 0.09, 0.12

RSA One-hot 7 7 121 5519 0.69 No 0, 0
Scheme I 4 9 3632 0.57 No 0, 0
Scheme II 3 1 3204 0.52 No 0, 0
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controller modules using Hamming (15,11) code. We then
place the error detection circuitry at the output of the state
FFs. We quantitatively analyze the security of the FSMs using
the V FFI metric [12]. Table IV summarizes the results.

From Table IV, we can observe that EDC based approaches
cannot provide adequate protection as indicated by the V FFI

metric. For all controller benchmark circuits except the mem-
ory controller, the FSMs are susceptible to fault attack even
with error detection protection in place. The reason is that
EDC based approaches do not take into account the biased
fault model, where an attacker can exploit the non-uniform
path delay distribution of an FSM to flip multiple targeted bits
and bypass normal state transitions to bump into a protected
state directly. Also, there are valid don’t-care states in EDC
based countermeasure as shown in column 5 in Table IV.
If these valid don’t-care states have access to a protected
state, they present a security vulnerability; as these don’t-care
states can be exploited to access the protected state without
triggering the error detection mechanism.

It is clear from Table IV that the EDC based counter-
measures have much higher area overhead (on average 54.72%
w.r.t. Scheme I and 75.59% w.r.t. Scheme II) and timing
overhead (on average 45.99% w.r.t. Scheme I and 46.57% w.r.t.
Scheme II) compared to our proposed security-aware encoding
schemes. The reason is that, unlike our proposed encoding
schemes which make the FSM inherently resilient to fault
attack, EDC approaches require additional circuitry for error
detection. However, our proposed security-aware encoding
offers better security (fault attack resilience) compared with
EDC based approaches (validated by V FFI metric).

Note that, there are other EDC based approaches (e.g., [3],
[5], [10], [8]) which have higher error detectability than Ham-
ming code. However, none of these approaches address the
vulnerabilities introduced by the synthesis tool and therefore,
cannot provide adequate protection to fault attack.

E. Security and Cost of Non-Linear EDC

Non-linear EDC-based techniques [3], [13], [14] utilize
the ‘Error Detectability’ metric to evaluate the security of
the algorithm. ‘Error Detectability’ states the probability of
detecting any error due to faults by an EDC algorithm. For
example, ‘Error Detectability’ of 1−2−16 means a fault error
can be detected with a probability of 0.99998. Therefore, a
non-linear EDC-based technique with adequate ‘Error De-
tectability’ metric an provide protection for any bit-flips due to
fault. Therefore, these techniques can potentially detect fault
injection attacks which can individually set or reset a single
FF without affecting any other gates utilizing FIBs.

However, the non-linear EDC-based techniques require im-
practical area and delay overhead. For example, to protect
the RSA controller module which consists of 80 gates and
has a delay of 0.64 ns with a minimum error detectability of
1− 2−2, the technique proposed in [16] requires 8,305 gates
(area overhead 10,281%) and has a delay of 29.99 ns (delay
overhead 4,586%) [16]. If the minimum error detectability
is raised to 1 − 2−16, this technique requires 96,096 gates
(area overhead 120,020%) and has a delay of 294.57 ns (delay

TABLE IV: Results for EDC Based Approaches.

Encoding # # state # Valid don’t Area Delay Security V FFI =

scheme states FFs -care states (µm2 ) (ns) concern? ASF, PV T

AES Hamming (7,4) 5 7 11 6606 1.07 Yes 0.23, 0.07
SHA Hamming (7,4) 7 7 9 7955 3.64 Yes 0.10, 0.70
MIPS Hamming 19 15 2029 12534 1.71 Yes 0.11, .003

Processor (15,11)
Memory Hamming 66 15 1982 85976 2.32 No 0, 0
Contrl. (15,11)
RSA Hamming (7,4) 7 7 9 7197 1.01 Yes 0.19, 0.02

overhead 45,926%) [16]. Even considering the overall design,
these area and delay overhead are prohibitively expensive for
most applications.

We evaluate the security of our proposed encoding schemes
using the V FFI metric. It is similar in spirit to the ‘Error
Detectability’ as it provides a mathematical probabilistic mea-
sure of successful fault injection attack. For example, V FFI of
(0,0) means a protected state cannot be accessed by an unau-
thorized state and the respective FSM is not vulnerable biased
fault attacks. Table III shows that our proposed approach can
provide adequate security for most FSMs. Also, our approach
requires negligible area and delay overhead. Note that, our
proposed technique does not cover FIB-based fault attack as
discussed in Section V.

F. Results of Our Proposed FSM Architecture

We first validate that our proposed security-aware FSM
architecture has equal and uniform path delay distribution.
Table V shows the minimum and maximum delay of our
‘Secure FSM Logic’ for the binary encoded AES controller
circuit where the Final Round’ is the protected state. NS
and PS in the table represent the Next State and Present
State bits, respectively. Table V shows that all paths from
‘Next State’ to ‘Present State’ have almost equal and uniform
delay. Therefore, an adversary can no longer exploit the non-
uniform path delay distribution to perform fault injection
attack. We implemented the security-aware FSM architecture
for different benchmarks with different number of protected
states. Our experiments show that our proposed architecture
ensures almost uniform and equal delay for these cases as
well.

We also validated the security provided by our proposed
security-aware FSM architecture, by applying it to the fault
attack scenario presented in Section VIII-B. We place our
secure FSM architecture on the scheme II of the AES con-
troller circuit and apply the same fault attack environment.
However, we were unable to perform a successful fault attack.
The reason is that when the protected state ‘Final Round’ (111)
is tried to be accessed from an unauthorized state ‘Wait Data’
(100), the secure FSM logic changes the present state to ‘000’
state; thereby protecting the FSM from fault attack. Also, we
have performed simulated fault attacks by introducing glitches
in the clock signal to cause setup time violation of state FFs
and our results show this architecture can effectively prevent
these attacks as well.

TABLE V: Delay distribution of ‘Secure FSM Logic’
Path Min. delay (ns) Max. delay (ns)
NS[0] −→ PS[0] 0.34 0.35
NS[1] −→ PS[1] 0.34 0.36
NS[2] −→ PS[2] 0.32 0.35
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Fig. 8: Security-aware FSM architecture. Area overhead anal-
ysis w.r.t. overall design.

Fig. 8 presents the area overhead as a function of the number
of protected states when our proposed FSM architecture is
applied to the five controller circuit. The overhead shown
is with respect to the overall design (including controller
and datapath). Fig. 8 shows that the area overhead increases
linearly with respect to the number of protected states. The
reason is that, the area corresponding to the ‘secure FSM
logic’ increases linearly with the number of protected states.
Also, we can observe that the area overhead is significantly
small (< 1.5%) compared to the overall design. Moreover, our
proposed architecture has no delay overhead; it adds only one
cycle latency to the design. Note that, the area overhead for
RSA is much smaller compared to the Memory Controller.
The reason is that the overall area of RSA is much larger than
the Memory Controller.

Our flow can serve as an important component of the
recent academic and industrial initiative for developing CAD
frameworks for automated security vulnerability assessment
of hardware designs[29], [30]. The FSM extraction of our
proposed flow can be used for different applications, e.g.,
extracting trigger sequence [31] for sequential Trojan [32],
[33], [34].

IX. CONCLUSION

In this paper, we presented a security-aware FSM design
flow to make the FSM fully secure against fault injection
attacks. To establish this flow, we proposed two security-aware
FSM encoding schemes. Our encoding schemes inherently
make the FSM tolerant to fault attacks without the need of any
extra circuitry. We also proposed a framework that systemati-
cally analyzes and evaluates vulnerabilities in the FSM against
fault injection attacks. Our proposed flow allows the designer
to find security vulnerabilities in the FSM at an early design
stage. Our approach also enables the designer to quantitatively
compare the security of different implementations of the same
design. If vulnerabilities exist in the design then our proposed
mitigation technique can be applied to make the FSM secure
against such attacks. To eliminate the vulnerabilities identified
by AVFSM, we propose a security-aware FSM architecture.
Our proposed FSM architecture provides protection against
laser-based fault attack and addresses the vulnerability intro-
duced by CAD tools which are not covered by the encoding
schemes. The proposed approach can easily be incorporated
to the current ASIC flow.
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machine encoding for vhdl synthesis,” IEE Proceedings-Computers and
Digital Techniques, vol. 148, no. 1, pp. 23–30, 2001.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2834396, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, AUGUST 2017 14

[23] T. K. Moon, “Error correction coding,” Mathematical Methods and
Algorithms. Jhon Wiley and Son, 2005.

[24] L. Yuan, G. Qu, T. Villa, and A. Sangiovanni-Vincentelli, “An fsm
reengineering approach to sequential circuit synthesis by state splitting,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 6, pp. 1159–1164, 2008.

[25] Y. Shi, C. W. Ting, B.-H. Gwee, and Y. Ren, “A highly efficient method
for extracting fsms from flattened gate-level netlist,” in Circuits and
Systems (ISCAS), Proceedings of 2010 IEEE International Symposium
on. IEEE, 2010, pp. 2610–2613.

[26] Synopsys, Available at http://www.synopsys.com/.
[27] L. Zussa, J.-M. Dutertre, J. Clédiere, B. Robisson, A. Tria et al.,

“Investigation of timing constraints violation as a fault injection means,”
in 27th Conference on Design of Circuits and Integrated Systems (DCIS),
Avignon, France, 2012.

[28] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection
attacks on cryptographic devices: Theory, practice, and countermea-
sures,” Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–3076, 2012.

[29] A. Nahiyan, K. Xiao, D. Forte, and M. Tehranipoor, “Security rule
check,” in Hardware IP Security and Trust. Springer, 2017, pp. 17–36.

[30] K. Xiao, A. Nahiyan, and M. Tehranipoor, “Security rule checking in
ic design,” Computer, vol. 49, no. 8, pp. 54–61, 2016.

[31] A. Nahiyan, M. Sadi, R. Vittal, G. Contreras, D. Forte, and M. Tehra-
nipoor, “Hardware trojan detection through information flow security
verification,” in Test Conference (ITC), 2017 IEEE International. IEEE,
2017, pp. 1–10.

[32] F. Farahmandi, Y. Huang, and P. Mishra, “Trojan localization using
symbolic algebra,” in Design Automation Conference (ASP-DAC), 2017
22nd Asia and South Pacific. IEEE, 2017, pp. 591–597.

[33] J. Cruz, F. Farahmandi, A. Ahmed, and P. Mishra, “Hardware trojan
detection using atpg and model checking,” in VLSI Design and 2018
17th International Conference on Embedded Systems (VLSID), 2018 31st
International Conference on. IEEE, 2018, pp. 91–96.

[34] T. Hoque, S. Narasimhan, X. Wang, S. Mal-Sarkar, and S. Bhunia,
“Golden-free hardware trojan detection with high sensitivity under
process noise,” Journal of Electronic Testing, vol. 33, no. 1, pp. 107–
124, 2017.

Adib Nahiyan obtained his BS in Electrical En-
gineering from Bangladesh University of Engineer-
ing and Technology (BUET) in 2014. Currently he
is a PhD student in the Electrical and Computer
Engineering department at University of Florida,
Gainesville, USA. His PhD studies are funded by
Semiconductor Research Corporation (SRC) and
Cisco. During his graduate studies he worked as
research intern with Cisco, NC. His research interest
includes Hardware Security, Secure VLSI Design
and Finding Vulnerabilities in ASIC Design.

Farimah Farahmandi is a Ph.D candidate at the
Department of Computer and Information Science
and Engineering (CISE) at the University of Florida.
She received her B.S. and M.S. from University
of Tehran, Iran in 2010 and 2013 respectively. Her
current research interests include formal verification,
hardware security and post-silicon validation and
debug. She was a research intern at Cisco advanced
security research group. She is the recipient of IEEE
System Validation and Debug Technology Commit-
tee Student Research Award, 2017.

Prabhat Mishra is a Professor in the Department
of Computer and Information Science and Engi-
neering at the University of Florida. His research
interests include embedded and cyber-physical sys-
tems, energy-aware computing, hardware security
and trust, system-on-chip verification, bioinformat-
ics, and post-silicon validation and debug. He re-
ceived his Ph.D. in Computer Science and Engi-
neering from the University of California, Irvine.
He has published five books and more than 150
research articles in premier international journals

and conferences. His research has been recognized by several awards including
the NSF CAREER Award, IBM Faculty Award, three best paper awards,
and EDAA Outstanding Dissertation Award. Prof. Mishra currently serves
as the Deputy Editor-in-Chief of IET Computers & Digital Techniques, and
as an Associate Editor of ACM Transactions on Design Automation of
Electronic Systems, IEEE Transactions on VLSI Systems, and Journal of
Electronic Testing. He has served on many conference organizing committees
and technical program committees of premier ACM and IEEE conferences.
He is currently serving as an ACM Distinguished Speaker. Prof. Mishra is an
ACM Distinguished Scientist and a Senior Member of IEEE.

Domenic Forte is an Assistant Professor with the
Electrical and Computer Engineering Department
at University of Florida, Gainesville, FL where he
leads multiple efforts within the Florida Institute
for Cybersecurity Research (FICS Research). His
research covers the entire domain of hardware secu-
rity from nanoscale devices to printed circuit boards
(PCBs). Topics include hardware security primitives,
hardware Trojan detection and prevention, security
of the electronics supply chain, security-aware de-
sign automation tools, reverse engineering, and anti-

reverse engineering. He also performs research in biometric system security,
reliability, and implementation with specialization in physiological signals
such as electrocardiogram (ECG) and photoplethysmograph (PPG).

Dr. Forte is a recipient of the NSF Faculty Early Career Development
Program (CAREER) Award (2017), Army Research Office (ARO) Young In-
vestigator Award (2016), Northrop Grumman Fellowship (2012), and George
Corcoran Memorial Outstanding Teaching Award (2008). His research has
been also recognized through best paper awards and nominations from
multiple organizations and conferences. He is a member of the Institute of
Electrical and Electronics Engineers (IEEE) and IEEE Circuits and Systems
Society (CAS). He serves on the organizing committees of top conferences
in hardware security such as IEEE International Symposium on Hardware
Oriented Security and Trust (HOST) and Asian HOST. He also serves on
the technical program committees of including Design Automation Confer-
ence (DAC), International Conference on Computer-Aided Design (ICCAD),
Network and Distributed System Security Symposium (NDSS), IEEE Inter-
national Test Conference (ITC), and International Symposium for Testing and
Failure Analysis (ISTFA). He is a co-author of the book Counterfeit Integrated
Circuits-Detection and Avoidance, co-editor of the book Hardware Protection
through Obfuscation, and co-editor of the book ” Security Opportunities in
Nano Devices and Emerging Technologies ”. He is an Associate Editor of
Journal of Hardware and Systems Security (HaSS) and was the Guest Editor
of the IEEE Computer 2016 Special Issue on Supply Chain Security for Cyber-
Infrastructure.

Mark Tehranipoor (S’02M’04SM’07-F’18) is cur-
rently the Intel Charles E. Young Preeminence
Endowed Chair Professor in Cybersecurity at the
University of Florida. His current research projects
include: hardware security and trust, supply chain
security, IoT security, VLSI design, test and reliabil-
ity. Dr. Tehranipoor has published over 400 journal
articles and refereed conference papers and has given
more than 175 invited talks and keynote addresses.
He has published 10 books and more than 20 book
chapters. He is a recipient of a dozen best paper

awards and nominations, as well as the 2008 IEEE Computer Society (CS)
Meritorious Service Award, the 2012 IEEE CS Outstanding Contribution,
the 2009 NSF CAREER Award, and the 2014 AFOSR MURI award. He
serves on the program committee of more than a dozen leading conferences
and workshops. He has also served as Program Chair of a number of IEEE
and ACM sponsored conferences and workshops (HOST, DFT, D3T, DBT,
NATW, and more). He co-founded the IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST) and served as HOST-2008
and HOST-2009 General Chair. He is currently serving as a founding EIC for
Journal on Hardware and Systems Security (HaSS) and Associate Editor for
JETTA, JOLPE, IEEE TVLSI and ACM TODAES. Prior to joining UF, Dr.
Tehranipoor served as the founding director for CHASE and CSI centers at
the University of Connecticut. He is currently serving as a founding director
for Florida Institute for Cybersecurity Research (FICS). Dr. Tehranipoor is a
Fellow of the IEEE, a Golden Core Member of IEEE CS, and Member of
ACM and ACM SIGDA.


