
0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

1

Automated Test Generation for Debugging
Multiple Bugs in Arithmetic Circuits
Farimah Farahmandi, Member, IEEE, and Prabhat Mishra, Member, IEEE,

Abstract—Optimized and custom arithmetic circuits are widely used in embedded systems such as multimedia applications,
cryptography systems, signal processing and console games. Debugging of arithmetic circuits is a challenge due to increasing
complexity coupled with non-standard implementations. Existing algebraic rewriting techniques produce a remainder to indicate the
presence of a potential bug. However, bug localization remains a major bottleneck. Simulation-based validation using random or
constrained-random tests are not effective for complex arithmetic circuits due to bit-blasting. In this paper, we present an automated
test generation and bug localization technique for debugging arithmetic circuits. This paper makes four important contributions. We
propose an automated approach for generating directed tests by suitable assignments of input variables to make the remainder
non-zero. The generated tests are guaranteed to activate bugs. We also propose an automatic bug fixing technique by utilizing the
patterns of the remainder terms as well as by analyzing the regions activated by the generated tests to detect and correct the error(s).
We also propose an efficient debugging algorithm that can handle multiple dependent as well as independent bugs. Finally, our
proposed framework, consisting of directed test generation, bug localization and bug correction, is fully automated. In other words, our
framework is capable of producing a corrected implementation of arithmetic circuits without any manual intervention. Our experimental
results demonstrate that the proposed approach can be used for automated debugging of large and complex arithmetic circuits.

Index Terms—Algebraic Rewriting, Directed Test Generation, Remainder-based Debugging, Bug Localization, Error Correction,
Multiple Bugs Correction.

F

1 INTRODUCTION

INCREASING complexity of integrated circuits increases
the probability of bugs in designs. To make it worse, the

reduction of time to market puts a lot of pressure on verifica-
tion and debug engineers to potentially faulty sign-off. The
situation gets further exacerbated for arithmetic circuits as
the bit blasting is a serious limitation for most of the existing
validation approaches [1]. Faster bug localization is one of
the most important steps in design validation.

The urge of high speed and high precision computations
increases use of arithmetic circuits in real-time applications
such as multimedia and cryptography operations. More-
over, ensuring the security of hardware circuits demands
fast and precise arithmetic components. Optimized and
custom arithmetic architectures are required to meet the
high speed and precision constraints. There is a critical need
for efficient arithmetic circuit verification and debugging
techniques due to error-proneness of non-standard arith-
metic circuit implementations [2]. Recent algebraic rewriting
techniques have automated the verification of arithmetic
circuits; however, debugging and bug localization still suffer
from many manual interactions. Hence, automated debug-
ging of arithmetic circuits is absolutely necessary for effi-
cient design validation.

A major problem with design validation is that we do
not know whether a bug exists, and how to quickly find
and fix it. Moreover, we do not know how many bugs exist
in the design. We can always keep on generating random
tests, in the hope of activating the bug(s); however, random

• F. Farahmandi and P. Mishra are with the Department of Computer and
Information Science and Engineering, University of Florida, FL, 32611.
E-mail: {ffarahmandi,prabhat}@ufl.edu

Manuscript received October 27, 2016

test generation is neither scalable nor efficient when designs
are large and complex. Existing directed test generation
techniques [3], [4] are promising only when the list of faults
(bugs) is available. However, they are not applicable when
bugs are not known. We propose a directed test generation
technique that is guaranteed to activate multiple bugs (if
any). The generated tests would also help for faster bug
localization.

Existing arithmetic circuits verification approaches have
focused on checking the equivalence between the specifica-
tion of a circuit and its implementation. They use an alge-
braic model of the implementation [1], [5], [6], [7] using a set
of polynomials F . The specification of an arithmetic circuit
can be modeled as a polynomial fspec using a numerical
representation of primary inputs and primary outputs. The
verification problem is formulated as mathematical manipu-
lation of fspec over polynomials in F . If the gate-level netlist
has correctly implemented the specification, the result of
the algebraic rewriting is a zero polynomial; otherwise, it
produces a non-zero polynomial containing primary inputs
as variables. We call this polynomial remainder. Remainder
generation is one-time effort and multiple counterexamples
(directed tests) can be generated from one remainder. Any
assignment to remainder’s variables that make the remain-
der to have a non-zero numerical value, generates one
counterexample. There can be several possible assignments
that make remainder non-zero; each of these assignments is
essentially a test vector that is guaranteed to activate at least
one of the existing bugs in the implementation.

In this paper, we present a framework for directed test
generation and automated debugging of datapath intensive
applications using the remainder to locate and correct the
bugs in the implementation. Fig. 1 shows an overview of

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

2

Fig. 1. Overview of our automated debugging framework. It consists of four important steps: remainder generation, test generation, bug localization,
and automated debugging of arithmetic circuits.

our proposed framework. Our method generates directed
test vectors that are guaranteed to activate the bug. We
consider gate misplacement or signal inversion that change
the functionality of the design as our fault model. Next, we
apply the generated tests, one by one, to find the faulty
outputs that are affected by the existing bug. Regions that
contribute in producing faulty outputs as well as their in-
tersections are utilized for faster bug localization. We show
that certain bugs manifest specific patterns in the remainder.
This observation enables automated debugging to find and
correct the source of error. We have applied our method
on large combinational arithmetic circuits (including 256-bit
multipliers) to demonstrate the usefulness of our approach.

Fig. 2. Illustrative faulty scenarios for a given design with bug-specific
input and output cones. Each star represents one bug. Here, PI and PO
refer to the primary inputs and primary outputs, respectively.

Figure 2 shows different scenarios of a buggy implemen-
tation. Figure 2 (a) illustrates the case when only one bug
exists in the implementation. Figure 2(b) shows the presence
of two bugs which do not share input cones (independent
bugs). We describe how to fix one or more independent
bugs in Section 4 and Section 5.1, respectively. We refer
to “activation independence” in the context of activating
independent bugs as shown in Figure 2 (b). In other words,
independent bugs do not have any overlapping input cones.
On the other hand, their effect can be seen in different
primary outputs. The effect of different bugs (dependent
and independent bugs) may appear in overlapping or non-
overlapping cones as shown in Figure 2. We present algo-
rithms to locate and correct multiple independent bugs. In
many cases, bugs may share input cones (dependent bugs)
as shown in Figure 2 (c). In this paper, we also propose an
algorithm to automatically fix multiple dependent bugs in
Section 5.2. Generally, a buggy implementation can contain
any combination of independent and dependent bugs as
shown in Figure 2 (d).

Figure 3 shows different steps of our proposed de-
bugging approach to locate and correct multiple bugs for
various scenarios depicted in Figure 2. The existence of a
non-zero remainder as a result of applying the functional
verification between specification and implementation of

an arithmetic circuit is a sign of a faulty implementation.
However, there is no information about the number of ex-
isting bugs in the implementation. There can be a single bug
or multiple independent/dependent bugs in the design. In
Section 4, we present a single bug correction algorithm. The
main question is that how to know the number of remaining
bugs in the design and which algorithm should be used to
fix them. In order to determine that whether there is more
than one bug in the implementation, we try to partition the
remainder R into sub-remainders Ri first. If the remainder
can be partitioned successfully into n sub-remainders, we
can conclude that there are at least n independent bugs in
the implementation as we discussed in Section 5.1. Algo-
rithms in Section 4 are used over each sub-remainder Ri

to fix each bug. However, if a single bug cannot be found
for remainder Ri, there are multiple dependent bugs which
construct the sub-remainder Ri. Therefore, we try to find a
single bug corresponding to remainder Ri first. If we can
find such a bug, the bug will be fixed. Otherwise, we try the
proposed algorithm of Section 5.2 to find dependent bugs
responsible for sub-remainder Ri. The procedure is repeated
for all of the sub-remainders. To the best of our knowledge,
our proposed method is the first attempt to automatically
correct multiple dependent/independent bugs in arithmetic
circuits.

The remainder of the paper is organized as follows.
We discuss related work in Section 2. Section 3 gives an
overview about the algebraic rewriting and remainder gen-
eration. Section 4 discusses our framework for directed test
generation and bug localization for a single bug. Section 5
describes our debugging approach to detect and fix multiple
bugs. Section 6 presents our experimental results. Finally,
Section 7 concludes the paper.

2 RELATED WORK

Test generation is extremely important for functional valida-
tion of integrated circuits. A good set of tests can facilitate
the debugging and help the verification engineer to find the
source of problems. Test generation techniques can be clas-
sified into three different categories: random, constrained-
random [8] and directed [4], [9], [10], [11]. Random test
generators are used to activate unknown errors; however,
random test generation is inefficient when designs are large
and complex. Constrained-random test generation tries to
guide random test generator towards finding test vectors
that may activate a set of important functional scenarios.
The probabilistic nature of these constraints may lead to
situations which can result in generating inefficient tests.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

3

Remainder Partitioning

NumberOf(Ri) > 0
Output Corrected

Implementation

Find Single Bug using Ri

(Section 4 and Section 5.1)

Bug

Found?

Find Dependent Bugs

(Section 5.2)

Yes

No

Yes

No

Remainder

 R

Ris

Fig. 3. Overview of different steps of our proposed debugging frame-
work. Independent bugs are located and corrected using the first loop
with dotted line as described in Section 5.1. Debugging of dependent
bugs are discussed in Section 5.2.

Moreover, constraint generation is not possible when we do
not have knowledge about the potential bug. A directed test
generator, on the other hand, generates one test to target
a specific functional scenario [4], [12]. Clearly, less effort
is needed to reach the same coverage goal using directed
tests compared to random or constrained-random tests.
However, existing directed test generation methods require
a fault list or desired functional behaviors that need to be
activated [12]. These approaches cannot generate directed
tests when the bug (faulty scenario) is unknown.

When effective tests are available, the source of error
has to be localized. Most of the traditional debugging tools
are based on techniques such as simulation, binary decision
diagrams (like BDDs,*BMD [13]) and SAT solvers [14], [15].
Solving SAT problem results in finding suspicious bug
locations. A SAT branching schema [15] is introduced to
use reverse domination approach and reduce SAT solvers’
efforts. However, all of these approaches suffer from state
space explosion while dealing with large and complex
arithmetic circuits. Furthermore, most of these approaches
cannot provide concrete suggestions to fix bugs. Satisfia-
bility modulo theory (SMT) solvers have been utilized to
debug RTL designs [16]. Word-level MUXes are added to
error candidate signals and the resultant formula is solved
by a word-level SAT solver; however, these methods are
dependent on existence of bug traces. The presented method
of [17] suggests an error searching algorithm to reduce the
potential error set. It uses masking error situations to find
debugging priorities. This method relies on the coverage of
tests generated by simulation. In [18], dynamic slicing for
bug localization has been introduced; however, it requires
subsequent error localization and correction. Several error
correction efforts have been proposed over combinational
and sequential arithmetic circuits [19], [20]. In this paper, we
propose an efficient framework to diagnose arithmetic cir-
cuit in order to detect and correct gate misplacement error.

Existing method [21] is the most recent work in debugging
arithmetic circuits that requires two rounds of verification
process: backward rewriting and forward rewriting. As a
result, [21] is slow and it is not scalable. Moreover, the
approach cannot detect dependent bugs since the authors
did not consider the inter-dependence between bugs.

The existing approaches either require manual interven-
tion or are not scalable. We propose an efficient, scalable
and fully automated test generation, bug localization and
debugging framework for arithmetic circuits.

3 BACKGROUND: REMAINDER GENERATION

Several algebraic rewriting approaches have been proposed
to verify an arithmetic circuit’s implementation against its
specification. A class of these techniques are based on com-
puter symbolic algebra. They map the verification problem
as an ideal membership testing [6], [22]. Another class of
techniques are based on functional rewriting [1], [23], [24],
[25]. These methods can be applied on combinational [5],
[26], [27] and sequential [28], [29] Galois Filed F2k arith-
metic circuits using Gröbner Basis theory [30] as well as
signed/unsigned integer Z2n arithmetic circuits [1], [6], [31],
[32], [33].

The specification of an arithmetic circuit can be rep-
resented as a word-level polynomial fspec. In the specifi-
cation polynomials, variables are in the symbolic form of
the primary inputs and primary outputs of the circuits.
A combination of variables as well as integer coefficients
constructs the polynomial’s terms. Suppose that we have a
multiplier with {a0, a1, ..., an−1, b0, b1, ..., bm−1} as primary
inputs and {z0, z1, ..., zn+m−1} as primary outputs such that
{ai, bi, zi} ⊂ Z2. The specification of the multiplier can

be written as:
n+m−1∑

i=0
2i.zi − (

n−1∑
i=0

2i.ai.
m−1∑
i=0

2i.bi)=0. So, the

specification polynomial would be in the following form:
(2n+m−1.zn+m−1+ ...+2.z1+z0)−(2n−1.an−1+ ...+2.a1+
a0).(2m−1.bm−1 + ... + 2.b1 + b0) = 0.

To perform verification, the algebraic model of the im-
plementation is used. In other words, each gate in the im-
plementation is modeled as a polynomial with integer coef-
ficients and variables from Z2 (x ∈ 0, 1→ x2 = x). Variables
can be selected from primary inputs/outputs as well as
internal signals in the implementation. These polynomials
are derived in a way that they describe the functionality of a
logic gate. Equation 1 shows the corresponding polynomial
of NOT, AND, OR, XOR gates. Note that, any complex gate
can be modeled as a combination of these gates and its
polynomial can be computed by combining the equations
shown in Equation 1.

z1 = NOT (a)→ z1 − (1− a) = 0,

z2 = AND(a, b)→ z2 − (a.b) = 0,

z3 = OR(a, b)→ z3 − (a+ b− a.b) = 0,

z4 = XOR(a, b)→ z4 − (a+ b− 2.a.b) = 0

(1)

The verification method is based on transforming fspec
using information that we directly extract from gate-level
implementation. Then, the transformed specification poly-
nomial is checked to see if the equality to zero holds. To ful-
fill the term substitution, the topological order of the circuit
is considered (primary outputs have the highest order and

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

4

primary inputs have the lowest). By considering the derived
variable ordering, each non-primary input variable which
exists in the fspec is replaced with its equivalent expression
based on its polynomial. Then, the fspeci is updated and the
process is continued on the updated fspeci+1

until we reach
a zero polynomial or a polynomial that only contains pri-
mary inputs (remainder). Note that, using a fixed variable
(term) ordering to substitute the terms in the fspecis results
in having a unique remainder [30]. Example 1 shows the
verification process of a faulty 2-bit multiplier.

Example 1: Consider a 2-bit multiplier with gate-level
netlist shown in Fig. 4. Suppose that we deliberately insert
a bug in the circuit shown in Fig. 4 by putting the XOR
gate with inputs (A0, B0) instead of an AND gate. The
specification of a 2-bit multiplier is shown by fspec. The ver-
ification process starts from fspec and replaces its terms one
by one using information derived from the implementation
polynomials as shown in Equation 2. For instance, term 4.Z2

from fspec is replaced with expression (R+O−2.R.O). The
topological order {Z3, Z2} > {Z1, R} > {Z0,M,N,O} >
{A0, A1, B0, B1} is considered to perform term rewriting.
The verification result is shown in Equation 2. Clearly, the
remainder is a non-zero polynomial and it reveals the fact
that the implementation is buggy.

Fig. 4. Faulty gate-level netlist of a 2-bit multiplier

fspec : 8.Z3 + 4.Z2 + 2.Z1 + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 − A0.B0

step1 : 4.R + 4.O + 2.z1 + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 − A0.B0

step2 : 4.O + 2.M + 2.N + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 − A0.B0

step3(remiander) : 1.A0 + 1.B0 − 3.A0.B0

(2)

The existence of a bug in the deeper stages of the design
may make it difficult to generate the remainder due to term
explosion effect. The reason is the faulty gate may introduce
new terms to the intermediate steps of the specification
polynomial’s reduction which show the difference of the
functionality of the buggy and corresponding correct gate.
These extra terms are multiplied to polynomials of other
gates and grow continuously until the remainder contains
only primary inputs (we call it remainder’s terms explosion
effect). There are also research efforts [25] that try to reduce
the complexity of remainder generation using logic reduc-
tion rules during Gröbner basis rewriting. Moreover, word-
level abstractions have been exploited for efficient reduction
of finite field arithmetic circuits [27]. These approaches en-
ables fast and compact remainder generation. For example,
our earlier work [33] has shown that remainders can be
generated in a reasonable time (in the order of seconds
to few minutes) for complex arithmetic circuits (e.g., 128-
bit multipliers) irrespective of the location of the bugs.

Specifically, they shown that we can evaluate O(n) choices
(instead of 2n in the näive scenario where n is the number
of inputs in the design) to generate a compact non-zero
remainder if the implementation is buggy.

The basic idea of [33] is that more compact remainders
can be generated based on partitioning the input space of
the design. It is based on applying certain constraints on
primary inputs and solve the verification problem for each
input constraint. If set M = {0, 1}n shows all possible input
combinations of a design with input bits {x0, x1, ..., xn−1}
and if specification (S) and implementation (I) are equiv-

alent for all combinations of (S
M≡ I), they should also be

equivalent for any input combination that belongs to M
(∀M ⊂ M, S

M≡ I). If the implementation is buggy, at
least one of the intermediate reductions will result in a non-
zero remainder. Therefore, the original verification problem
is mapped to n sub-problems where the specification and
implementation polynomials are updated by applying the
corresponding constraints. In each sub-problem, the cor-
responding specification polynomial is reduced over the
related implementation polynomials.
Example 2: Assume that we want to partition the input
space of the 2-bit multiplier shown in Figure 5. Suppose
that primary inputs are given in the following order:
{A1, B1, A0, B0}. Table 1 shows the four different con-
straints on primary inputs. It can be easily verified that
these four constraints cover the entire primary inputs’ space.
The first and second rows cover two combinations each,
the third row covers four combinations, and the last row
covers eight combinations. Therefore, it covers all sixteen
combinations in Table 1.

Fig. 5. Faulty netlist with one bug (gate 8 should have been an AND)

TABLE 1
Input constraints to efficiently verify and debug faulty circuit shown in

Figure 5.

A1 B1 A0 B0

A1 0 0 0
A1 1 0 0
A1 B1 1 0
A1 B1 A0 1

Now, we can apply the incremental algebraic rewrit-
ing [33] using all of the input constraints shown in Table 1
to verify the correctness of the implementation. Equation 3
shows the steps of the verification. The specification and
implementation polynomials are updated using each con-
straint. For instance, polynomial of gate 3 is computed as:

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

5

N = A0 ∗ B1 = 0 as A0 and B1 are considered zero in the
first iteration (first row of the Table 1). Since the last itera-
tion generates a non-zero remainder, the implementation is
faulty. The generated remainder also has lower complexity
compared to the original remainder that can be obtained
using existing methods (R = 8∗A1∗B1−8∗A1∗A0∗B0∗B1).

F1 = {Z0 = 0,M = 0, N = 0, O = 0, R = 0, Z1 = 0, Z2 = 0, Z3 = 0}
fspec1 : 8 ∗ Z3 + 4 ∗ Z2 + 2 ∗ Z1 + Z0

step11(remainder) : 0

F2 = {Z0 = 0,M = 0, N = 0, O = A1, R = 0, Z1 = 0, Z2 = A1, Z3 = A1}
fspec2 : 8 ∗ Z3 + 4 ∗ Z2 + 2 ∗ Z1 + Z0 − 4 ∗ A1

step12 : 2 ∗ Z1 + Z0 + 8 ∗ A1

step22(remainder) : 8 ∗ A1

(3)
To make this approach applicable for any bug in the

design, we developed an incremental remainder generation
based on a dynamic ordering that utilizes binary search. We
start from a pre-defined order of input constraints (as shown
in Table 1) and try the first row, if the first row generates a
non-zero remainder, we are done. We have the remainder
and we can start the debugging. Otherwise, we divide the
table of the constraints in two and select the first row in the
second half of the table. If the constraints of this row lead to
a non-zero remainder, we continue dividing until we reach
one of the following three options:
• The last row of the table and we still have a zero

remainder. In the first case, we can conclude that
the design is correct since the last row has all of the
variables in the symbolic form.

• We reach to a row which generates a non-zero re-
mainder. In this case, the remainder is generated and
we can use it for debugging.

• We reach to a row, r, that leads to a number of terms
which is higher than a predefined threshold. This
case indicates that term explosion effect is likely if we
use this row or any of the subsequent (below this row
in the table) rows. Therefore, our search algorithm
focuses only on the upper rows (i.e., rows 1 to r − 1)
in the table. The key observation is that from the last
row that generates a zero remainder till the row that
is likely to have a term explosion effect, some new
input conditions have triggered the bug. If we give
those input conditions higher priority, it is possible
to generate a compact remainder quickly.

We provide the proof that the incremental approach is
both sound and complete. Based on Theorem 2 in [34],
the ideal generated by Gröbner basis of polynomials of a
gate-level netlist C, J 0 + J(C), is equivalent to the ideal
of polynomials of the netlist, I(C) if C is an acyclic circuit.
Therefore, J 0+J(C) = I(C). In the incremental approach,
first, we derive the complete J 0 + J(C) for circuit C
without considering the input values. In the next step, we
use input partitions through several iterations in order to
quickly generate a compact remainder. We denote the input
conditions of the i-th iteration of the incremental approach
using Ti. Input condition Ti is a subset of 2n space of
the design complexity. Therefore, if we feed condition Ti

as well as other derived value of internal variables of the
design based on Ti in polynomials of J 0 + J(C), we will
have (J 0 + J(C))Ti

⊆ J 0 + J(C) ⊆ I(C). Therefore, if

the circuit is buggy and a bug is activated by reducing
Fspec over J 0 + J(C)Ti

, the verification process gener-
ates remainder r where shows Fspec /∈ (J 0 + J(C))Ti

.
Based on the Theorem 2 in [34], Fspec /∈ J 0 + J(C), so
Fspec /∈ I(C). Therefore, if any iteration of the incremental
approach results in a non-zero remainder, the design is
buggy, and the bug is needed to be detected and corrected.
The incremental approach is beneficial for debugging since
it drastically reduces the complexity of the remainder in
the presence of a bug, and leads to faster bug localization.
In order to show the correctness of a gate-level netlist, we
need to perform all of the iterations to conclude that circuit
is correct. In other words, if we want to cover about the
correct behavior of the circuit implementation, we need to
either check all of the iterations (as shown in Theorem 1
in [33]) to make sure the complete input space or keep all
the variables in their symbolic form and perform the ideal
membership testing. For example, if any of the iterations of
the incremental approach generates a zero remainder, we
cannot reach the conclusion that the circuit implementation
is correct as Fspec ∈ J 0 + J(C)Ti

6= Fspec ∈ I(C). We
have shown in the Theorem 1 in [33] that all n rows of input
conditions should be considered to cover the whole space of
J 0 + J(C) in order to decide the implementation is correct.
If the netlist is buggy, one of the iterations is guaranteed
to produce a compact remainder. Note that our incremental
approach can be performed in a parallel fashion as iterations
are independent of each other.

4 AUTOMATED DEBUGGING USING REMAINDERS

Our framework uses the remainder that is generated by
algebraic rewriting technique as discussed in Section 3. If
the remainder is a non-zero polynomial, it means that the
implementation is buggy; however, the source of the bug is
unknown. Our approach takes the remainder and the buggy
implementation as inputs and tries to find the source of error
in the implementation and correct it. As shown in Fig. 1,
our debugging framework has three important steps. First,
we use the remainder to generate directed tests to activate
faulty scenarios. Next, we try to localize source of the bug by
leveraging the generated tests. Finally, we use an automated
correction technique to detect and correct the bug which
resides in the suspicious area. We describe each of these
steps in detail in the following sections.

4.1 Directed Test Generation

It has been shown that if and only if the remainder is zero,
the implementation is bug-free [31]. Thus, when we have
a non-zero polynomial as a remainder, any assignment to
its variables that makes the numerical value of the remain-
der non-zero is a bug trace. In our proposed approach,
we make use of the remainder to generate test cases to
activate unknown bugs. The test is guaranteed to activate
the bug in the design. The remainder is a polynomial with
Boolean/integer coefficients. It contains a subset of primary
inputs as its variables. Our approach takes the remainder
and finds the possible assignments to its variables such that
it makes the numerical value of the remainder non-zero.
As shown in Example 1, the remainder may not contain

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

6

all of the primary inputs. As a result, our approach may
use a subset of the primary inputs (that appear in the
remainder) to generate directed tests with don’t cares. Such
assignments can be found using a SMT solver by defining
Boolean variables and considering signed/unsigned inte-
ger values as the total value of the remainder polynomial
(i 6= 0 ∈ Z, check(R = i)). The problem of using SMT
solver is that for each i, it finds at most one assignment
of the remainder variables to produce value of i, if possible.
We implemented an optimized algorithm to find all possible
assignments that produce non-zero numerical values of the
remainder. Algorithm 1 shows the details of our test genera-
tion method. The algorithm takes remainder (R) polynomial
as well as primary inputs (PI) as inputs and generates a
set of directed tests T to activate the bug. A remainder is
constructed as a set of terms as R = T1 +T2 + ...+Tn where
each term Tj is a product of a coefficient Cj and a monomial
Mj . The algorithm tries different sets of binary values to PIs
(si)s, and computes the numerical value of R for assignment
si. Mi is a product of binary variables. The value of Mj is
either one or zero as it is a product of some binary variables
(line 7). Therefore, the term value may be zero or equal to
the term coefficient (Cj). To compute the numerical value of
R for assignment si, the algorithm computes the sum of the
values of all the terms in the remainder (lines 4-8). If the sum
of all the terms is non-zero, the corresponding primary input
assignments are added to the set of Tests (lines 9-10). The
test generation algorithm can be implemented in a parallel
fashion to improve its performance.

Algorithm 1 Directed Test Generation Algorithm
1: procedure TEST–GENERATION
2: Input: Remainder, R
3: Output: Directed Tests T
4: for different assignments si of PIs in R do
5: Sum = 0
6: for each term Tj = Cj .Mj ∈ R do
7: if (Mj(si) 6= 0) then
8: Sum+ = Cj

9: if (Sum != 0) then
10: T = T ∪ si
11: return T

Example 3: Consider the faulty circuit shown in Fig. 4
and the remainder polynomial R = A0 + B0 − 3.A0.B0.
The assignments that make R to have a non-zero numerical
value (R = 1 or R = −1) are (A0 = 1, B0 = 0), (A0 =
0, B0 = 1) and (A0 = 1, B0 = 1). These are the scenarios
that make difference between functionality of an AND gate
and an XOR gate. Otherwise, the fault will be masked since
when (A0 = 0, B0 = 0), AND and XOR produce the same
output.

TABLE 2
Directed tests to activate fault shown in Fig. 4

A1 A0 B1 B0

X 1 X 0
X 0 X 1
X 1 X 1

4.2 Bug Localization
So far, we know that the implementation is buggy and we
have all the necessary tests to activate the faulty scenarios.
Our goal is to reduce the state space in order to localize the
error by using the tests generated in the previous section.
The bug location can be traced by observing the fact that
the outputs can possibly be affected by the existing bug.
We apply the tests, simulate the circuit and compare the
outputs with the golden outputs (golden outputs can be
found from the specification polynomials) and keep track of
faulty outputs in set E = {e1, e2, .., en}. Each ei denotes one
of the erroneous outputs. To localize the bug, we partition
the gate-level netlist to find fanout-free cones (set of gates
that are directly connected together) of the implementation.
Each gate whose output is connected to more than one gate
is selected as a fanout. For generality, gates that produce
primary outputs are also considered as fanouts. To partition
implementation, gate-level netlist as well as a list of fanouts
(Lfo) are taken. In each iteration, one fanout-gate is chosen
from list Lfo and gate level netlist is traced backward until
the gate gi is reached. The inputs of gi can come from one
of the fanouts in the list Lfo or primary inputs. All of the
visited gates are marked as one cone. This process continues
until all of the fanouts are visited.

Algorithm 2 shows the bug localization procedure.
Given a partitioned erroneous circuit and a set of faulty
outputs E, the goal of the automatic bug localization is
to identify all of the potentially responsible cones for the
error. First, we find a set of cones Cei = {c1, c2, ..., cj}
that constructs the value of each ei from set E (line 4-5).
These cones contain suspicious gates. We intersect all of
the suspicious cones Ceis to prune the search space and
improve the efficiency of bug localization algorithm. The
intersection of these cones are stored in CS (line 7-8).

Algorithm 2 Bug Localization Algorithm
1: procedure BUG–LOCALIZATION
2: Input: Partitioned Netlist, Faulty Outputs E
3: Output: Suspected Regions CS

4: for each faulty output ei ∈ E do
5: find cones that construct ei and put in Cei

6: CS = Ce0

7: for ei ∈ E do
8: CS = CS ∩ Cei

9: return CS

When the effect of the bug can be observed in multiple
outputs, it means that the location of the bug is in the
intersection of cones which constructs the faulty outputs.
We use this information to detect and correct the bug. We
describe the details of debugging in Section 4.3.

Example 4: Consider the faulty 2-bit multiplier shown in
Fig. 6. Suppose the AND gate with inputs (M,N) has been
replaced with an OR gate by mistake. So, the remainder
is R = 4.A1.B0 + 4.A0.B1 − 8.A0.A1.B0.B1. The assign-
ments that activate the fault are calculated based on method
demonstrated in Section 4.1. Tests are applied and the faulty
outputs are obtained as E = {Z2, Z3}. Then, the netlist is
partitioned to find fanout free cones. The cones involved
in construction of faulty outputs are: CZ2 = {2, 3, 4, 6, 7}

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

7

and CZ3
= {2, 3, 4, 6, 8}. The intersection of the cones that

produce faulty outputs is CS = {2, 3, 4, 6}. As a result, gates
{2, 3, 4, 6} are potentially responsible as the source of error.

Fig. 6. Faulty gate-level netlist of a 2-bit multiplier with associated tests

4.3 Error Correction

After test generation and bug localization, the next step is
error detection. The remainder is helpful since it contains
valuable information about the nature of the bug and its
location. For example, when the faulty gate is located in
the first level (inputs of faulty gates are primary inputs),
it creates certain patterns in the remainder. These specific
patterns are due to the termination of the substitution
process in the algebraic rewriting after this level, which
prevents errors from propagating any further. In Example
1, the first level XOR gate is placed by mistake instead of
an AND gate. Let us consider the effect of the bug from
algebraic point of view: the equivalent algebraic value of Z0

is M = A0+B0−2.A1.B0 in the erroneous implementation;
however, in the correct implementation, Z0 should be equal
to Z0

∗ = A0.B0. Thus, the difference between Z0 and Z0
∗,

(A0 + B0 − 3.A1.B0) will be observed in the remainder.
Therefore, whenever a + b − 3.a.b pattern is seen in the
remainder and there is an XOR gate with inputs (a, b) in
the implementation, we can conclude that the XOR gate is
the source of error and it should be replaced with an AND
gate. Table 3 shows the patterns that will be observed for
misplacement of different types of gates. Note that, 3-input
(or more) gates can be modeled as cascades of 2-input gates.
So, the patterns are also valid for complex gates.

From Section 4.2, we have a set of cones CS such that
their gates are potentially responsible for the bug. First, the
gates in CS are extracted and they are kept in a set G. Next,
the suspicious gates from the first level of G are considered
and the remainder is scanned to check whether one of the
patterns in Table 3 is recognized. If the pattern is found,
the faulty gate is replaced with the corresponding gate.
Otherwise, the terms of the remainder are rewritten such
that it contains output variable of first level gates (at this
time, we are sure that the first level gates are not the cause
of the problem). We also remove the non-faulty gates from
G. Then, we repeat the process over the remaining gates in
G until we find the source of the error.

Example 5: Consider the faulty circuit shown in Ex-
ample 4. The remainder is R = 4.A1.B0 + 4.A0.B1 −
8.A0.A1.B0.B1 and the potentially faulty gates are num-
bered as 2, 3, 4 and 6. As we can see, remainder R does not
contain any patterns shown in Table 3. It means that the first
level suspicious gates 2, 3 and 4 are not responsible for the

TABLE 3
Remainder patterns caused by gate misplacement error

Suspicious Gate Appeared Remainder’s Pattern Solution

AND (a,b) P1 : -a-b+2.a.b S1 : OR (a,b)
P2 : -a-b+3.a.b S2 : XOR (a,b)

OR (a,b) P1 : a+b-2.a.b S1 : AND (a,b)
P2 : a.b S2 : XOR (a,b)

XOR (a,b) P1 : a+b-3.a.b S1 : AND (a,b)
P2 :-a.b S2 : OR (a,b)

fault. Thus, we try to rewrite the remainder’s terms with the
output of the correct gates. In this step, we know that gates
2 , 3 and 4 are correct so their algebraic expressions are
also true. As 6 is the only remaining gate, it is the answer.
However, we continue the process to show the final solution.
By considering M = A1.B0 and N = A0.B1, R will be
rewritten as R∗ = 4.(M + N − 2.M.N) (signal’s weight is
computed as shown in [21]). Now, we consider the gates
in the second level. This time R∗ matches with one of the
patterns shown in Table 3. Based on Table 3, an AND gate
with (M,N) as its inputs has been replaced with an OR
gate. The only gate that has these characteristics is gate 6
which is also in G. It means that the source of the error has
to be the gate 6 and if replaced with an AND gate, the bug
will be corrected.

Finding and factorizing of remainder terms in order
to rewrite them would be complex for larger designs. To
overcome the complexity and obviate the need for manual
intervention, we propose an automated approach shown in
Algorithm 3. The algorithm takes faulty gate-level netlist,
remainder R and potentially faulty gates of set G (sorted
based on their levels) as inputs. It starts from the first level
gate gi; if gi is the buggy gate, one of the patterns in Table
3 should have been manifested in the remainder based on
gi’s type. Therefore, the debugging algorithm computes two
patterns (P1, P2) with gi’s inputs (lines 7-12) and scan the
remainder to check whether one of them matches. If one
of the patterns is found, the bug is identified and it can
be corrected based on Table 3 (lines 13-16). Otherwise, gi
is correct and it will be removed from set G and next gate
will be selected. Moreover, the current algebraic expression
of gi is true and it can be used in subsequent iterations
(gate gj from higher levels gets the output of gi as one of
its inputs, the expression of gi can be used instead of its
output variables). Since our goal is to compute patterns such
that they contain just primary inputs, we use a dictionary
to keep the expression of the gate output based on the
primary inputs (line 19). The weight of each gates’ output
is computed based on the weight of its inputs. The weights
of the primary inputs and primary outputs are known a
priori. The weights of any internal signals can be computed
recursively utilizing forward as well as backward traversal.
We can also utilize the following properties for different
gates. For XOR and OR gates, the output’s weight is same as
inputs weight. In multipliers, the output’s weight of the first
level AND gates is computed as multiplication of inputs’
weights (they are responsible for partial products). On the
other hand, the output’s weight of other AND gates in the
design is computed as the sum of inputs’ weights (since
they are mostly used in half adders [21]). In adders, the
output’s weight of all AND gates is computed as union
of input’s weights. This process continues until the bug is

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

8

detected or set G is empty. Since, the algorithm starts from
primary inputs, it will not reach a gate whose inputs do not
exist in the dictionary. Note that, our debugging approach
does not need all of the counterexamples to work. It works
even if there is no counterexample (all of the gates are con-
sidered as suspicious) or there is just one counterexample.
However, having more counterexamples improves debug
performance.

Algorithm 3 Error Correction
1: procedure BUG–CORRECTION
2: Input: Suspicious gates G, remainder R
3: Output: Faulty gate and solution
4: sort gi based on their levels (lowest level first)
5: for each level j do
6: for each gi ∈ G from level j do
7: (a, b) = inputs(gi)
8: if !(each of (a, b) are from PI) then
9: a = dic.get(a)

10: b = dic.get(b)

11: P1 = ComputeP1(a, b)
12: P2 = ComputeP2(a, b)
13: if (P1 is found in R) then
14: return gate gi and solution S1 from Table 3
15: else if (P2 is found in R) then
16: return gate gi and solution S2 from Table 3
17: else
18: remove gi from G
19: dic.add(output(gi), Expression(gi(a, b)))

Example 6: We want to apply Algorithm 3 on the case
shown in Example 5. We start from gate 2 and compute P1 =
−2.A1− 2.B0 + 4.A1.B0 and P2 = −2.A1− 2.B0 + 6.A1.B0

for gate 2. As these patterns do not exist in the remainder,
gate 2 is correct and the dictionary will be updated as (M =
2.A1.B0). The same will happen for gate 3 and 4, and the
dictionary will be updated as (M = 2.A1.B0, N = 2.A0.B1)
at the end of this iteration. When we consider gate 6, the Pis
are as follows: P1 = 4.A1.B0 + 4.A0.B1 − 8.A1.B0.A0.B1

and P2 = 4.A1.B0.A0.B1. Considering that R = 4.A1.B0 +
4.A0.B1 − 8.A0.A1.B0.B1, P1 of gate 6 can be observed in
R. So the bug is the OR gate 6, and based on Table 3 it can
be fixed by replacing with an AND gate.

Signal inversion problem can be viewed in the same
way as gate replacement error. If we consider a wire as
a buffer, it may be replaced with an inverter. Therefore,
it is a special class of gate replacement error, where a
buffer can be replaced with an inverter, or vice versa. For
example, assume that signal a is inverted by mistake in the
actual implementation. Therefore, the difference between
the expected behavior and the implementation appears in
the remainder by performing the functional rewriting of
the specification polynomial. In this case, instead of a we
encounter 1 − a in the implementation, and the remainder
is R = 1− a− a = 1− 2 ∗ a. As a result, the appearance of
the pattern 1 − 2 ∗ a in the remainder reveals the fact that
signal a is inverted by mistake.

5 DEBUGGING MULTIPLE BUGS

Section 4 presented algorithms for detecting, localizing and
correcting a single bug. In this section, we extend these
algorithms for debugging multiple errors. The fault model
(gate replacement) as well as remainder generation process
remains the same. If the algebraic rewriting of an arithmetic
circuit results in a non-zero remainder, we know that the
implementation is buggy. However, the sources of the errors
are unknown. Our plan is to use the non-zero remainder in
order to generate directed tests to activate the bugs, localize
the source of errors and correct them. First, we explain how
we extend the approach presented in Section 4 to correct
multiple independent bugs. Then, we present an approach
to solve the debugging of two dependent faulty gates.

If there is more than one bug in the implementation,
the remainder will be affected by all of them since all of
the faulty gates are contributing in the algebraic rewriting
procedure as well as the remainder generation. In other
words, the remainder shows the effect of all bugs in the
implementation. Example 7 shows how the remainder is
generated when there are two bugs in the implementation.
Example 7: In the circuit shown in Figure 7, the AND gate
with inputs (A0, B0) as well as the AND gate with inputs
(A1, B1) are replaced with XOR and OR gates, respectively
(i.e., two faults in the implementation of a 2-bit multiplier).
The result of algebraic rewriting (remainder polynomial)
can be computed as shown in Equation 4.

fspec : 8.Z3 + 4.Z2 + 2.Z1 + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 − A0.B0

step1 : 4.R + 4.O + 2.z1 + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 − A0.B0

step2 : 4.O + 2.M + 2.N + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 − A0.B0

step3(remiander) : R = A0 + B0 − 3.A0.B0 + 4.A1 + 4.B1 − 8.A1.B1

(4)

Fig. 7. Gate-level netlist of a 2-bit multiplier with two bugs (dark gates)
as well as associated tests to activate them.

Detailed observation in the remainder generation proce-
dure shows that the overall remainder can be considered as
the sum of different individual bug’s effect in the algebraic
rewriting process. For instance, one part of the remainder
shown in Example 4, comes from the remainder shown in
Example 1 (the same bug) as (A0 + B0 − 3.A0.B0) and the
other part (4.A1 + 4.B1 − 8.A1.B1) is responsible for the
second bug and it is equal to the remainder that can be
the result of the algebraic rewriting with an implementation
which contains only the second bug. Therefore, each assign-
ment that makes the remainder non-zero activates at least
one of the existing faulty scenarios. Some tests may activate
all of the bugs at the same time. Thus, Algorithm 1 can be
used to generate directed tests when there are more than
one fault in the design.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

9

Example 8: Directed tests to activate the buggy imple-
mentation of Example 7 are shown in Figure 5. The as-
signments make the first part of the remainder non-zero
(A0 + B0 − 3.A0.B0), and activates the first fault. For
example, assignment (A1 = 1, A0 = 0, B1 = 0, B0 = 0)
manifests the effect of the first fault in Z0. On the other hand,
the assignments that make the second part of the remainder
non-zero (4.A1 + 4.B1 − 8.A1.B1), are tests to activate the
second bug. Assignment (A1 = 1, A0 = 0, B1 = 0, B0 = 0)
activates the second fault in Z2. However, the assignment
(A1 = 1, A0 = 0, B1 = 0, B0 = 1) activates both of these
faults at the same time (Z0 and Z2).

To localize the source of errors, the circuit is simulated
using the generated tests to find faulty primary outputs.
Faulty gates exist in the cones that construct the function-
ality of faulty outputs. In order to prune the search space
and localize source of errors, we cannot directly apply Al-
gorithm 2 as their intersection may be a zero set. However,
some information can be found from using Algorithm 2.
In the following sections, we describe the bug localization
and correction of multiple bugs: i) Section 5.1 covers bugs
with independent input cones (independent bugs), and ii)
Section 5.2 covers bugs which share some input cones
(dependent bugs).

5.1 Error Correction for Multiple Independent Bugs
We refer two bugs as independent if they have different
input cones (fan-ins). Figure 7 shows two independent bugs
in a 2-bit multiplier. If multiple bugs are independent of
each other, their effect can be observed easily in the remain-
der as the sum of each individual bug’s remainder (sum of
sub-remainders). Therefore, if the remainder is partitioned
into multiple sub-remainders based on the primary inputs
(each part representing the effect of one bug), each sub-
remainder as well as the associate faulty cones can be fed
into Algorithm 3 in order to detect and correct the source of
multiple independent errors.

If the input cones (input fan-ins) of faulty gates are
separate from each other, a different set of primary inputs
may appear in each sub-remainders. In order to find the
sub-remainders, each term of the overall remainder and its
corresponding monomial are examined to determine which
sub-remainder it belongs. Algorithm 4 shows the remainder
partitioning procedure.

Algorithm 4 Remainder Partitioning
1: procedure REMAINDER–PARTITIONING
2: Input: Remainder R
3: Output: Sub-remainders R
4: Sort terms of R based on their size
5: R0 = largestTerm(R)
6: R = {R0}
7: for each term t ∈ R do
8: for each sub-remainder Ri ⊂ R do
9: if (Ri contains some of the variable t) then

10: Ri = Ri + t
11: else
12: new Rj = t
13: R = R ∪Rj

return R

Algorithm 4 takes the overall remainder R as input and
returns the partitioned sub-remainders Ris. The algorithm
sorts the terms of the R based on their monomial size (the
number of variables in each term) in descending order (line
5). In the next step, it starts from the largest term of the
remainder R and adds it to sub-remainder R0 (line 6). Then,
it examines all terms of R from the second largest term t to
find out which partition they belong to (lines 7-8). If some of
the variables of the term t already exist in the sub-remainder
Ri, the term t will be added to sub-remainder Ri (lines 9-10).
Otherwise, the algorithm creates a new sub-remainder Rj

and adds t to it (lines 12-13). The process continues until all
terms of the R are examined. If the algorithm results in only
one sub-remainder, it shows that faulty gates do not have
independent input cones. The computed sub-remainders
are fed into Algorithm 1 in order to generate directed tests
activating the corresponding bug of that sub-remainder. The
generated tests are used to define the corresponding faulty
outputs of each bug. Example 9 illustrates the remainder
partitioning procedure.

Example 9: Consider the faulty multiplier design shown in
Figure 7 and corresponding remainder shown in Equation 4.
In order to find different possible sub-remainders, the re-
mainder is sorted as: R = −3.A0.B0−8.A1.B1 +A0 +B0 +
4.A1 + 4.B1. The partitioning starts from term −3.A0.B0

and as there are no sub-remainder so far, sub remainder R1

is created and the term is added to it as: R1 = −3.A0.B0.
The second term −8.A1.B1 is examined and as R1 does
not contain variables A1 and B1, new sub-remainder R2

is created. Similarly, rest of the terms of R are examined and
R1 and R2 are computed as: R1 = −3.A0.B0 +A0 +B0 and
R2 = −8.A1.B1 +4.A1 +4.B1. The directed tests are shown
in Figure 7.

The generated tests are applied and faulty outputs are
defined. The faulty outputs of each bug are fed into Algo-
rithm 2 in order to find potential faulty cones. Algorithm 3
is used with each sub-remainder as well as corresponding
potential faulty gates as its inputs, and it tries to detect and
correct each bug. In other words, the problem of debugging
a faulty design with n independent bugs is mapped to
debugging of n faulty designs where each design contains a
single bug. We illustrate how to apply Algorithm 3 to correct
multiple independent sources of errors using Example 10.

Example 10: Having the directed tests shown in Figure 7,
faulty outputs Z0 and Z2 as well as two sub-remainders
computed in Example 9, Algorithm 3 is used twice to find
the source of errors. In the first attempt, the faulty output
is Z0 and the computed potential faulty cone using Algo-
rithm 2 contains only gate 1. In this gate, gate 1 as well as
R1, are fed into the bug correction algorithm (Algorithm 3).
Two patterns P1 = A0+B0−3.A0.B0 (if the potential faulty
gate 1 should be an AND gate) and P2 = −1.A0.B0 (if the
potential faulty gate 1 should be an OR gate) are computed.
Therefore, gate 1 should be replaced with an AND gate to
fix the first bug since the P1 is equal to the remainder R1.
The same procedure is used for the second bug while the
potential faulty gates are {2, 3, 4, 6, 7} since the only faulty
output is Z2. Trying different patterns results in a conclusion
that gate 4 should be replaced with an AND gate.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

10

5.2 Error Correction for Dependent Bugs

In this section, we describe how to detect and correct de-
pendent bugs that share input cones. The key difference
here from the cases that we solved in Section 5.1 is the
fact that the remainder cannot easily be partitioned into
sub-remainders since some of the terms of the correspond-
ing sub-remainder may be canceled through other sub-
remainders or they may be combined to each other. The
reason is that the bugs share some input cones (fan-ins) and
their individual sub-remainders may have common terms
consisting of a set of primary inputs as variables. When sub-
remainders are combined to each other to form the overall
remainder, some term combinations/cancellations happen.
Moreover, some of the sub-remainders may be affected by
lower level faults and the presented method in Section 5.1
cannot solve these cases. We illustrate the fact using the
following example.
Example 11: Consider the faulty implementation of a 2-bit
multiplier with two bugs as shown in Figure 8. Assume
that gates 6 and 8 are replaced with OR gates to inject
faults. It can be observed from Figure 8 that two bugs
share some set of input cones (gates {2, 3, 4} are common
in input cones of faulty gates 6 and 7). Applying algebraic
rewriting on the circuit shown in Figure 8 results in a non-
zero remainder: R = 8.A1.B1 + 12.A1.B0 + 12.A0.B1 −
16.A0.A1.B0 − 16.A1.B0.B1. However, if only gate 6 is re-
placed with an OR gate in the implementation (single bug),
the remainder will be equal to: R1 = 4.A0.B1 + 4.A1.B0 −
8.A0.A1.B0.B1. Similarly, when only gate 7 is replaced with
an OR gate (single fault), the remainder will be computed
as: R2 = 8.A1.B1 − 8.A0.A1.B0.B1. As it can be observed,
R 6= R1 + R2. The reason is that buggy gate 6 has an
effect on the generation of sub-remainder R2. As a result,
R′2 should be computed as: R′2 = 8.A1.B1 + 8.A0.B1 +
8.A0.B1−16.A0.A1.B0−16.A1.B0.B1+8.A0.A1.B0.B1. We
can observe that R = R1 + R′2. Note that there is not any
monomial of A0.A1.B0.B1 in the remainder R; however,
this monomial exists in both R1 and R′2 with opposite
coefficients resulting in the term cancellation.

Fig. 8. Gate-level netlist of a 2-bit multiplier with two bugs (dark gates)
which shares some input cones as well as associated tests to activate
them.

As it can be observed from Example 11, term cancellation
as well as lower level bugs’ effect are two main reasons
that limit the applicability of the algorithms presented in
Section 5.1 to detect and correct bugs with common input
cones. In this section, we present a general approach to cor-
rect and detect multiple gate misplacement bugs regardless
of the bugs’ positions.

The first step to fix dependent bugs is to use Algorithm 1
in order to generate directed tests to activate unknown
bugs. In the next step, the circuit is simulated using the
generated tests to define the faulty outputs (E) since the
effect of faults will be propagated to them. Algorithm 2
cannot be used to localize the potential faulty cones since the
intersection of the faulty cones may eliminate some of the
faulty gates. Instead, union of all of the gates that construct
faulty outputs should be considered as potential faulty gate
candidates to make sure that all of the potential faulty gates
are considered. The next step is to define faulty gates and
their corresponding solutions using the remainder as well
as potential faulty gates. We construct two sub-remainders
from each potentially faulty gates (e.g., considering if the
current gate is faulty and the type of gate is AND, the
solution can be either OR gate or XOR gate based on Table 3)
and we store them in set R. To be able to detect the bugs, we
are looking for n sub-remainders Ri ∈ R where their union
construct the original remainder R.

In general, finding n dependent bugs and constructing
the respective remainder R maps to “subset sum” problem
and it has exponential complexity. In other words, we need
to find n potential sub-remainders such that their sum is
equal to the remainder R. Therefore, for each gate in a
faulty region, we construct two patterns (sub-remainders)
as shown in Algorithm 3 as total m sub-remainders. To be
able to detect and correct n dependent bugs, we need to
select

(m
n

)
where r1 + r2 + + rn = R. The most naı̈ve

algorithm to solve this problem is to consider all subset of
m sub-remainders, and check whether the subset sums to R
for every subset. The complexity of this algorithm is in the
order of O(2m). If we use the naı̈ve approach for finding two
dependent bugs, the complexity is O(m2). By introducing
Algorithm 5 and using a hash map, we could solve this
problem in linear time O(m) for two dependent bugs.

Figure 2 shows all of the buggy scenarios that our
current method can automatically debug in linear time. As
it can be seen in Figure 2(d), our method is capable of
handling 2 ∗ k dependent bugs in linear time when we
have k independent faulty regions where each of them has
at most two dependent bugs. In other words, Algorithm 4
partitions the remainder R into k sub-remainders where for
each sub-remainder ri, our method tries to find at most two
dependent bugs in linear time.

To detect two dependent bugs in a faulty region, we
are looking for two sub-remainders such that their sum
constructs the overall remainder R. Note that sub-remainder
of an individual bug may be affected by the other existing
bug in the implementation (for instance, sub-remainder R′2
which shows the effect of faulty gate 7 in Example 11 is also
affected by faulty gate 6). Algorithm 5 is used to locate and
correct two dependent bugs by finding two sub-remainders
R1 and R2 such that their sum is equal to R (R = R1 +R2).
The algorithm tries to find two equal polynomials: R − R1
and R2. The algorithm takes the remainder and potential
faulty gates as inputs and it returns two faulty gates and
their correct replacement as output. The algorithm consists
of three major steps. First, polynomials corresponding to
gate’s inputs (we have assumed that a gate has two in-
puts for simplicity in representation) are computed based
on primary inputs for each potentially faulty gate gi (a

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

11

and b are corresponding polynomials of gate gi inputs).
Computed polynomials are added to map dic (lines 6-8).
Second, algorithm constructs two patterns (P1 and P2) for
each potentially faulty gates gi based on Table 3 regarding
the functionality of their input gates (lines 9-12). Note that
P1 and P2 can be constructed based on the fact that we
have considered only three types of gates (AND, OR, and
XOR) so that each gate can be replaced by two other ones.
For example, if the suspicious and potentially buggy gate is
an AND gate, it can be replaced with either an OR gate
or an XOR gate to fix the bug. Therefore, we construct
two patterns, one showing the functionality of replacing the
AND gate with an OR gate (P1), and the other one shows
the functionality of replacing the AND gate with an XOR
gate (P2). Computed patterns are added to set P (line 13).
For computed patterns P1 and P2, the algorithm computes
the R−Pi and it stores the result in a map R (lines 14-15). In
the final step, each of the patterns Pj ∈ P is checked to see
whether it exists in the map R (lines 16-18). If Pj exists in
map R, it means that there were a pattern Pi in set P where
R − Pi = Pj . Therefore, Pi and Pj are the sub-remainders
R1 and R2 that we are looking for such that R1 = Pi and
R2 = Pj . The gates corresponding to Pi and Pj are faulty
and their solution can be found based on Table 3 (lines 19-
20). Note that, by using hash map R the complexity of the
algorithm is proportional to the number of faulty gates. The
complexity of the algorithm grows linearly with the number
of suspicious gates (suspicious gates can be obtained by bug
localization phase).

Algorithm 5 Debugging Two Bugs
1: procedure DEBUGGING–TWO–DEPENDENT –BUGS
2: Input: Suspicious gates G, remainder R
3: Output: Faulty gates and their solution
4: P = {} . A set that keeps patterns for all gates as

well as corresponding solution of each pattern
5: R = {} . A map that keeps remainder minus all

patterns as well as corresponding patterns
6: for each gate gi ∈ G do
7: (a, b) = computeInputPolynomials(gi)
8: dic.add(g,(a, b))
9: for each gate gi ∈ G do

10: (a, b)=dic.getInputPolynomials(gi)
11: P1 = computeP1(a, b)
12: P2 = computeP2(a, b)
13: P = P ∪ {P1, P2}
14: R.put((R− P1), P1)
15: R.put((R− P2), P2)

16: for each Pj ∈ P do
17: if Pj exists in R then
18: Pi = R.get(Pj)
19: gate gi = P.get(Pi) is faulty and get solution

Si from Table 3
20: gate gj = P.get(Pj) is faulty and get solution

Sj from Table 3

Note that, Algorithm 5 requires to construct the exact
sub-remainder responsible for the potential bugs (it is not
useful to find the pattern as some part of the remainder).
The exact sub-remainder is dependent on the gates that the

buggy gates are connected in the next level of the design.
To illustrate the point, suppose that gate g1 is connected to
only a half-adder with inputs g1 and g2. If fg1 and fg2 show
the corresponding polynomials of gates g1 and g2 based on
the functionality of their inputs, gate g1 contributes to the
functionality of the next level by polynomial

fg1+fg2−2∗fg1∗fg−2(XOR)+2∗fg1∗fg−2(AND) = fg1+fg2

However, if the gate g1 is buggy and its functionality is
replaced by polynomial fg1′ , there would be a difference
in the functionality of the design as: ∆ = fg1′ − fg1 . If
gate g1 is connected to a half-adder with inputs g1 and
g2, the reduction results in ∆ + fg2 − 2.∆.fg2 + 2.∆.fg2 .
Since fg2 should be included in the correct functionality of
the design, the exact sub-remainder can be computed as:
∆ − 2.∆.fg2 + 2.∆.fg2 = ∆. Patterns that are computed in
Table 3, match with ∆ based on the polynomials of inputs of
the faulty gate. In arithmetic circuit implementations, most
of the gates are connected to half-adders (or they are in the
last level of the design). Therefore, if we consider them as
potentially faulty gates, their constructed patterns are equal
to the exact remainder.

However, if buggy gate g1 is not connected to a half
adder, the exact sub-remainder due to faulty gate g1 may
include more terms besides the terms appears in the ∆. For
example, if g1 is connected to an XOR gate g2, the exact
remainder would be equal to: ∆ − 2.∆.fg2 . The extra part
−2.∆.fg2 comes from vanishing monomial propagated to
the remainder due to the effect of the bug and no counter-
part monomials will appear to cancel them during backward
algebraic rewriting.

Example 12: Consider the faulty full-adder shown in
Figure 9. The gate G2 has been replaced by an OR gate
to inject a fault in the gate-level implementation. After the
verification procedure, the remainder is: R = 2∗(A+B−2∗
A∗B)−2∗Cin∗(A+B−2∗A∗B). The remainder R has two
parts: the first part shows the difference of the functionality
of the faulty gate (OR) and the correct gate (AND) as:
∆ = (A+B−A∗B)−A∗B = A+B−2∗A∗B. However,
the second part (−2 ∗Cin ∗ (A + B − 2 ∗A ∗B)) represents
the vanishing monomials propagated to the remainder due
to the bug.

Fig. 9. Faulty netlist with one bug (gate G2 should have been an AND
gate.)

In order to construct the exact remainder for a suspicious
gate gi, we construct ∆ patterns based on Table 3. In the
second step, we consider each gate gj such that gi is its
input and we compute the corresponding polynomial gj
based on its inputs’ polynomials. The terms that contain ∆

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

12

should be added to the remainder. Note that, if we have two
cascaded bugs, the effect mentioned above only happen for
the higher level bug since the effect of the lower level bug
is considered while constructing the pattern of the higher
level bug. Another important aspect is that the weight of
each gate should be considered as we described in Section
4.3.

Example 13: Consider the faulty full-adder shown in
Figure 9 where gate G2 has been replaced by an OR gate
(It should be an AND gate in the correct implementation).
We know that the remainder is equal to R = 2∗((A+B−2∗
A∗B)−Cin ∗(A+B−2∗A∗B)) and the implementation is
buggy. If we are suspicious about the G2 and we guess that it
should be an AND gate, we construct ∆ = A+B−2∗A∗B
based on Table 3. Since G2 is only input of gate G3, we
construct the polynomial as

fG4 + ∆−∆ ∗ fG4

Since the term fG4
is not dependent on ∆, it is a part

of the correct functionality of the implementation, and it
should not be considered in the remainder. Therefore the
constructed remainder is

R′ = ∆−∆∗fG4
= 2∗((A+B−2∗A∗B)−Cin∗(A+B−2∗A∗B))

As R = R′, we can conclude that gate G2 is buggy, and
it should be replaced by an AND gate to fix the error. We
show that how exact sub-remainders are used to debug two
dependent bugs in Example 14.
Example 14: Consider the faulty implementation of a
2-bit multiplier shown in Figure 8 with remainder:
R = 8.A1.B1 + 12.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 −
16.A1.B0.B1. Corresponding directed tests to activate ex-
isting bugs are shown in Figure 8. Potential faulty gates
are computed based on faulty outputs Z2 and Z3 as gates
{2, 3, 4, 6, 7, 8}. Algorithm 5 creates two patterns for each of
the suspicious gates as shown in Table 4 column “Pattern”.
For each pattern, the possible solution as well as remainder
minus patterns are listed in the third and fourth columns of
Table 4, respectively. Note that, Table 4 is the combination
of two lists, P and hash map R, which are mentioned in
Algorithm 5. Each pattern listed in the second column is
tested to find whether it exists in hash map R (part of hash
map is shown in the fourth column). As it can be seen in the
table, P11 (highlighted polynomial in the second column) is
equal to R−P7 (highlighted in the fourth column). It means
that R−P7 = P11 → R = P11 +P7. Therefore, gate 6 and 8
are faulty since P7 and P11 are corresponding to these gates
and they should be substituted with AND gates.

6 EXPERIMENTS

6.1 Experimental Setup

The directed test generation, bug localization, and bug cor-
rection algorithms were implemented in a Java program and
experiments were conducted on a Windows PC with Intel
Xeon Processor and 16 GB memory. We have tested our
approach on both pre- [1] and post-synthesized gate-level
arithmetic circuits that implement adders and multipliers.
Post-synthesized designs were obtained by synthesizing the
high-level description of arithmetic circuits using Xilinx

synthesis tool. We consider wrong gate (gate replacement
bug) or signal inversion which change the functionality of
the design as our fault model. Several gates from differ-
ent levels were replaced with an erroneous gate in order
to generate faulty implementations. The remainders were
generated based on the method presented in [33]. Multiple
counterexamples (directed tests) are generated based on
one remainder. As each counterexample can be generated
independent of others, so we used a parallelized version
of the algorithm for faster test generation. We compared
our test generation method with existing directed test gen-
eration method [3] as well as random test generation. We
have inserted several bugs in the middle levels of the
circuits to conduct our experimental results. We compared
our debugging results with most recent work in this context
[21]. We use the benchmarks obtained from the authors [21].
However, we have implemented their algorithm to compare
our method with their method. To enable fair comparison,
similar to [21], we randomly inserted bugs (gate changes) in
the middle stages of the circuits. We improved the run-time
complexity of presented method in [35] by using efficient
data structures such as hash maps and sorted sets.

6.2 Debugging a Single Error
Table 5 presents results for test generation, bug localization
and debugging methods using multipliers and adders. The
first column (“Type”) indicates the types of benchmarks.
The second (“Size”) and third (“#Gates”) columns show the
size of operands and number of gates in each design, re-
spectively. Since the sizes of adder designs are smaller than
multiplier designs, we show results only for higher operand
sizes (bit-widths). The fourth column (“RG(s)”) shows th
CPU time to generate the remainder. The fifth column (“Dir.
[3] (s)”) indicates results for directed test generation method
presented in [3] by using SMV model checker [36] (We give
the model checker the advantage of knowing the bug). The
sixth column (“Random (s)”) represents results of random
test generation method (time to generate the first counterex-
ample using the random technique). The seventh column
(“Our TG (s)”) represents the time of our test generation
method that generates multiple tests. As it can be observed
from Table 5, our method has improved directed test genera-
tion time by several orders of magnitude. The eighth column
(“Bug Loc. (s)”) shows the CPU time for bug localization
algorithm. The ninth column (“ [21](s)”) shows the debug-
ging time of [21] using our implementation in Java. The next
column (“Our (TG+BL+DC) (s)”) provides CPU time of our
proposed approach which is the sum of test generation (TG),
bug localization (BL) and debugging/correction (DC) time.
The last column (“Improvement”) shows the improvement
provided by our debugging framework. Clearly, our ap-
proach is an order-of-magnitude faster than the most closely
related approach [21], especially for larger designs as bug
localization has an important effect. The reported numbers
are the average of generated results for several different
scenarios. For instance, if we zoom into test generation of the
first row (post-synthesized multiplier with 4-bit operands)
of Table 5, the reported results are the average of the nine
possible scenarios shown in Table 6.

Table 6 presents the debugging results of 4-bit post-
synthesized multiplier. The first column (“Faults”) shows a

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

13

TABLE 4
Patterns for potential faulty gates Example 14

Gate# Pattern solution Remainder minus pattern

2 (AND) 2.A1 + 2.B0 − 4.A1.B0 OR −2.A1 − 2.B0 + 8.A1.B1 + 16.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

2.A1 + 2.B0 − 6.A1.B0 XOR −2.A1 − 2.B0 + 8.A1.B1 + 18.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

3 (AND) 2.A0 + 2.B1 − 4.A0.B1 OR −2.A0 − 2.B1 + 8.A1.B1 + 12.A1.B0 + 16.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

2.A0 + 2.B1 − 6.A0.B1 XOR −2.A0 − 2.B1 + 8.A1.B1 + 12.A1.B0 + 18.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

4 (AND) 4.A1 + 4.B1 − 8.A1.B1 OR −4.A1 − 4.B1 + 16.A1.B1 + 12.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

4.A1 + 4.B1 − 12.A1.B1 XOR −4.A1 − 4.B1 + 20.A1.B1 + 12.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

6 (OR) 4.A0.B1 + 4.A1.B0 − 8.A0.A1.B0.B1 AND 8.A1.B1 + 8.A1.B0 + 8.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1 + 8.A0.A1.B0.B1

4.A0.A1.B0.B1 XOR 8.A1.B1 + 12.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1 + 4.A0.A1.B0.B1

7 (XOR) 4.A0.B1 + 4.A1.B0 + 4.A1.B1 − 8.A0.A1.B0 − 8.A1.B0.B1 + 4.A0.A1.B0.B1 AND 4.A1.B1 + 8.A1.B0 + 8.A0.B1 − 8.A0.A1.B0 − 8.A1.B0.B1 + 8.A0.A1.B0.B1

4.A0.A1.B0 + 4.A1.B0.B1 − 4.A0.A1.B0.B1 OR 8.A1.B1 + 12.A1.B0 + 12.A0.B1 − 20.A0.A1.B0 − 20.A1.B0.B1 + 4.A0.A1.B0.B1

8 (OR) 8.A1.B1 + 8.A0.B1 + 8.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1 + 8.A0.A1.B0.B1 AND 8.A1.B1 + 12.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

8.A0.A1.B0 + 8.A1.B0.B1 − 8.A0.A1.B0.B1 XOR 8.A1.B1 + 12.A1.B0 + 12.A0.B1 − 24.A0.A1.B0 − 24.A1.B0.B1 + 8.A0.A1.B0.B1

TABLE 5
CPU time and memory results of debugging arithmetic circuits . Single bug inserted in the middle stages of the design as well as close to primary

inputs. TO = timeout after 3600 sec; MO = memory out of 8 GB

Benchmark Verification Test Generation (TG) Bug Localization (BL) Debugging/Correction (DC)
Type Size #Gates RG(s) Dir. [3] (s) Random(s) Our TG(s) Bug Loc.(s) [21](s) Our (RG+TG+BL+DC)(s) Improv.

post-syn. Multipliers

4 72 0.07 1.88 0.02 0.01 0.001 0.2 0.09 2.22x
16 1632 1.26 42.69 1.48 0.32 0.03 4.32 2.04 2.11x
32 6848 3.57 205.66 3.03 0.82 0.16 18.50 5.97 3.1x
64 28K 14.31 MO 16.97 1.65 0.83 151.05 27.94 5.41x
128 132K 58.64 MO 66.52 3.83 5.1 1796.50 111.55 16.10x
256 640K 319.75 MO TO 15.65 22.39 TO 524.76 -
Geometric Mean 6.62 >25.46 >2.52 0.80 0.28 >21.25 11.09 > 4.17x

pre-syn. Multipliers

4 94 0.05 1.27 0.04 0.01 0.001 0.17 0.08 2.13x
16 1860 1.45 43.11 1.93 0.4 0.03 4.45 2.28 1.95x
32 7812 3.61 189.50 5.69 0.87 0.2 23.1 6.28 3.68x
64 32K 12.36 MO 29.07 1.77 0.8 180.3 27.27 6.61x
128 129K 50.60 MO 83.60 4.1 3.8 1743.07 98.34 17.72x
256 521K 225.72 MO TO 12.44 15.83 TO 396.2 -
Geometric Mean 5.77 >25.46 >4.03 0.82 0.26 > 22.28 10.33 >4.47x

post-syn. Adder
64 573 0.50 154.97 1.51 0.5 0.01 3.12 1.21 2.58x
128 1251 1.04 MO 3.48 1.07 0.05 6.60 2.73 2.41x
256 2301 3.52 MO 10.64 3.09 0.05 17.32 7.79 2.22x
Geometric Mean 1.22 >154.97 3.82 1.18 0.03 7.09 2.95 2.40

pre-syn. Adder
64 444 0.58 128.12 1.15 0.35 0.01 2.95 1.09 2.71x
128 880 1.08 MO 4.40 0.84 0.03 6.46 2.2 2.93x
256 1698 3.9 MO 9.10 2.23 0.1 16.18 7.44 2.17x
Geometric Mean 1.35 >128.12 3.58 0.87 0.03 6.76 2.61 2.58

TABLE 6
Test Generation time for 4-bit multiplier with 8 bits outputs # Gates = 72

Faults Dir. [3] (s) Ran.(s) #Tests Faulty Outputs # Ran. Tests Our TG(s)
XOR→ AND 1.48 0.05 18 Z7, Z6, Z5, Z4 2632 0.01
XOR→ OR 2.12 0.03 4 Z2 2945 0.01

XOR→ AND 1.95 0.02 128 Z4 2292 0.01
XOR→ OR 2.27 0.03 12 Z6, Z5, Z4, Z3 2945 0.05

XOR→ AND 1.03 0.02 14 Z6, Z5, Z4, Z3, Z2 2369 0.02
AND → XOR 2.44 0.05 3 Z6, Z5, Z4, Z3, Z2 1881 0.01
AND → OR 2.20 0.002 2 Z7, Z6, Z5 2258 0.01

AND → XOR 0.89 0.04 148 Z7, Z6, Z5, Z4 2164 0.03
OR→ AND 2.52 0.01 148 Z6 2920 0.01

Average 1.88 0.03 53 - 2489.55 0.01

possible set of gate replacement faults. Time to generate the
first counterexample using model checker [3] and random
techniques are reported in the second (“Dir. [3] (s)”) and
third columns (“Ran.(s)”), respectively. The fourth column
(“#Tests”) shows the number of directed tests generated by
our approach to activate the bug (each of them activates the
bug). The fifth column (“Faulty Outputs”) lists the outputs
that are affected by the fault (activated by the respective
tests reported in the “#Tests” column). The sixth column
(“#Ran. Tests”) shows the number of random tests required
to cover all of our directed tests. It demonstrates that even
for such small circuits, using random tests to activate the
error is impractical. The last column (“Our TG (s)”) shows
our test generation time. As mentioned earlier, the average
of these scenarios is reported in the first row of Table 6.

The experimental results demonstrate three important
aspects of our approach. First, our test generation method
generates multiple directed tests when the bug is unknown
in a cost-effective way. Second, our debugging approach
detects and corrects single fault caused by gate replacement
in a reasonable time. Finally, our debugging method is not

dependent on any specific architecture of arithmetic circuits
and it can be applied on both pre-synthesized and post-
synthesized gate-level circuits.
6.3 Debugging Multiple Errors
Table 7 presents results for remainder-generation, remainder
partitioning, test generation, bug localization and debug-
ging methods using multipliers and adders with multi-
ple independent bugs. The first column (“Type”) indicates
the types of benchmarks. The second (“Size”) and third
columns (“#Bugs”) show the size of operands and number
of bugs in each design, respectively. The fourth column
(“RG(s)”) shows th CPU time to generate the remainder.
The fifth column (“RP (s)”) represents the required time
for remainder partitioning, and the sixth column (“TG (s)”)
represents the time of our test generation method. The
seventh column (“Bug Loc. (s)”) shows the CPU time for bug
localization algorithm. The eighth column (“DC (s)”) shows
the debugging time to detect and correct all bugs. The next
column (“total (RP+TG+BL+DC)(s)”) provides CPU time
of our proposed approach which is the sum of remainder
partitioning (RP), test generation (TG), bug localization (BL)
and bug correction algorithm (DC) times. The tenth column
(“ [21](s)”) shows the required time of method presented
in [21] using our implementation in Java. The next column
(‘Improvement‘”) shows the improvement provided by our
debugging framework. Clearly, our approach is an order-
of-magnitude faster than the most closely related approach
[21], especially for larger multipliers as bug localization has
an important effect. However, our performance is compa-
rable with [21] for debugging adders since the number of

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

14

gates is small and the number of inputs is large and test
generation time may surpass the speed up of our debugging
method. The last column shows the required memory for
our debugging approach.

Table 8 presents results for remainder-partitioning, test
generation, bug localization and debugging methods using
multipliers and adders with two dependent bugs. The first
column (“Type”) indicates the types of benchmarks. The
second column (“Size”) shows the size of operands. The
third column (“RG(s)”) shows th CPU time to generate
the remainder. The fourth column (“RP (s)”) represents
the required time for remainder partitioning, and the fifth
column (“TG (s)”) represents the time of our test generation
method. The sixth (“BL (s)”) and sixth (“DC (s)”) columns
show the CPU time for bug localization and debugging
time, respectively. Bug localization time is relatively small
in comparison with other scenarios since the intersection of
faulty cones are not computed. The next column (“Total (s)”)
provides CPU time of our proposed approach which is the
sum of remainder partitioning (RP), test generation (TG),
bug localization (BL) and bug correction algorithm (DC)
times. As the result shows, our approach can detect and
correct multiple dependent bugs in reasonable time. We did
not compare with any approaches since there are no existing
approaches for detecting/fixing multiple dependent bugs.
Finally, the last column shows the required memory for our
debugging approach.

Table 9 shows our experimental results to debug one
random bug. We have injected faults in different stages
of the design: close to primary inputs 0 − 1/4, middle
stages: 1/4 − 2/4 and 2/4 − 3/4, and close to primary
outputs: 3/4 − 4/4. Column “RG (s)” shows the required
time to perform functional rewriting (remainder generation
time). Columns “RG”, “TG”, “BL”, and “DC” present the
required time for remainder generation, test generation, bug
localization, and bug correction steps, respectively. The final
column shows the overall debugging time. As it is shown in
the result, incremental verification can remove the effect of
bug location.

We have applied our method to Booth multipliers where
partial products are generated using Booth architecture,
compressor tree architecture is used for product accumula-
tor, and final stage addition is done using Brent-kung archi-
tecture. Columns “RG”, “TG”, “BL”, and “DC” present the
required time for remainder generation, test generation, bug
localization, and bug correction steps, respectively. The “to-
tal” column shows the overall debugging time. Finally, the
last column shows the required memory for our debugging
approach. The complexity of these benchmarks are compa-
rable with array multipliers that are used in our previous
experiments. Our method shows comparable performance
for Booth multipliers as shown in Table 10. In fact, our
method works efficiently on any combinational arithmetic
circuits with different architectures since the performance of
our approach is not dependent on exploiting similarity (e.g.,
half-adder structure) of pre-synthesized arithmetic circuits.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented an automated methodology for
debugging arithmetic circuits. Our methodology consists

of efficient directed test generation, bug localization, and
bug correction algorithms. We used the remainder produced
by equivalence checking methods to generate directed tests
that are guaranteed to activate the source of the bug when
the bug is unknown. We used the generated tests to localize
the source of the bug and find suspicious areas in the
design. We also developed an efficient debugging algorithm
that uses the remainder as well as suspicious areas to
locate and correct the bug without any manual intervention.
We extended the proposed approach to automatically fix
multiple bugs. Our experimental results demonstrated the
effectiveness of our approach to solve debugging problem
for large and complex arithmetic circuits by improving
debug performance by an order-of-magnitude compared to
the state-of-the-art approaches.

In our future research, we plan to reduce the complexity
of debugging n dependent bug in general scenario by prun-
ing the faulty candidates and using efficient algorithms.
To solve the automated debugging of more than two de-
pendent bugs, we plan to use memoization and map the
problem to several integer subset sum problems to reduce
the complexity of the problem.

8 ACKNOWLEDGMENTS

This work was partially supported by grants from National
Science Foundation (CNS-1441667) and Cisco Systems.

REFERENCES

[1] M. J. Ciesielski, C. Yu, W. Brown, D. Liu and A. Rossi, “Veri-
fication of gate-level arithmetic circuits by function extraction,”
in IEEE/ACM International Conference on Computer Design Automa-
tion(DAC), 2015, pp. 1–6.

[2] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drech-
sler, “Formal verification of integer multipliers by combining
gröbner basis with logic reduction,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2016. IEEE, 2016, pp.
1048–1053.

[3] M. Chen and P. Mishra, “Functional test generation using efficient
property clustering and learning techniques,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 29,
no. 3, pp. 396–404, 2010.

[4] M. Chen, X. Qin, H. Koo, and P. Mishra, System-level Validation -
high-level modeling and directed test generation techniques. Springer,
2012.

[5] J. Lv, P. Kalla and F. Enescu, “Efficient grbner basis reductions for
formal verification of galois field multipliers,” in Design Automa-
tion and Test in Europe Conference(DATE), 2012, pp. 899–904.

[6] F. Farahmandi and B. Alizadeh, “Grobner basis based formal
verification of large arithmetic circuits using gaussian elimination
and cone-based polynomial extraction,” in Microprocessor and Mi-
crosystems - Embedded Hardware Design, 2015, pp. 83–96.

[7] D. Ritirc, A. Biere, and M. Kauers, “Improving and extending the
algebraic approach for verifying gate-level multipliers,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2018.
IEEE, 2018, pp. 1556–1561.

[8] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Vinov and a.
Vinov, “Genesys-pro: Innovations in test program generation for
functional processor verification,” vol. 2, no. 38, Mar-Apr 2004, pp.
84–93.

[9] Y. Lyu, X. Qin, M. Chen, and P. Mishra, “Directed test generation
for validation of cache coherence protocols,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2018.

[10] F. Farahmandi, P. Mishra, and S. Ray, “Exploiting transaction level
models for observability-aware post-silicon test generation,” in
Proceedings of the 2016 Conference on Design, Automation & Test in
Europe. EDA Consortium, 2016, pp. 1477–1480.

[11] A. Ahmed, F. Farahmandi, and P. Mishra, “Directed test genera-
tion using concolic testing on rtl models,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2018. IEEE, 2018,
pp. 1538–1543.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

15

TABLE 7
CPU time and memory results for debugging of arithmetic circuits for multiple independent bugs. TO = timeout after 7200 sec. Bugs are inserted in

the middle stages of the design as well as close to primary inputs.

Type Size #Bugs RG(s) RP(s) TG(s) Bug Loc.(s) DC(s) total (RG+RP+TG+BL+DC)(s) [21](s) Imp. Mem

post syn. Multipliers

8x8 4 0.15 0.001 0.04 0.03 0.47 0.69 1.7 2.46x 6.4 MB
8 0.21 0.001 0.07 0.03 0.76 1.08 2.5 2.31x 7.6 MB

16x16 4 1.37 0.003 0.57 0.01 1.22 3.17 6.03 1.90x 29.53 MB
8 1.41 0.003 1.2 0.02 1.62 4.25 10.07 2.36x 31.88 MB

32x32 4 3.68 0.003 1.86 0.64 4.52 10.43 26.37 2.53 x 48.00 MB
8 3.73 0.003 2.08 1.18 8.4 15.4 43.98 2.85x 58.65 MB

64x64 4 14.87 0.006 5.65 3.9 31.48 55.9 178.89 3.20x 76.3 MB
8 15.1 0.006 7.06 4.7 45.31 73.17 250.07 3.41x 102.1 MB

128x128 4 58.9 0.008 11.59 10.1 114.52 195.12 1946.1 9.97x 378.5
8 67.25 0.008 25.67 20.87 175.88 289.68 2337.56 8.07x 406.3 MB

256x256 4 356.10 0.012 39.58 70.65 508.42 983.76 TO - 1.38 GB
8 372.8 0.012 65.21 122.01 706.22 1266.25 TO - 1.65 GB

Geometric Mean 8.24 0.004 2.79 1.13 15.98 29.66 > 47.69 > 3.28x

pre syn. Multipliers

8x8 4 0.21 0.001 0.44 0.03 0.25 0.93 1.73 1.86x 1.95 MB
8 0.22 0.001 0.5 0.03 0.46 1.21 2.67 2.21x 2.14 MB

16x16 4 1.48 0.002 1.3 0.05 1.5 4.33 7.4 1.68x 7.24 MB
8 1.55 0.002 1.90 0.05 1.87 5.34 10.05 1.88x 8.1 MB

32x32 4 3.9 0.003 2.08 0.73 5.8 12.51 30.34 2.42x 23.07 MB
8 3.97 0.003 3.23 1.31 7.98 16.49 43.18 2.62x 30.56 MB

64x64 4 13.71 0.001 5.94 4.5 33.22 57.37 194 3.38x 97.40 MB
8 14.09 0.005 7.91 6.9 69.5 112.42 225.85 2.01x 103.2 MB

128x128 4 53.42 0.006 13.5 15.09 170.46 252.47 2036.37 8.06x 222.46 MB
8 68.64 0.006 22.48 26.72 207.88 352.73 2260.6 6.4x 250.6 MB

256x256 4 283.97 0.01 26.75 39.16 653 1002.89 TO - 0.92 GB
8 294.75 0.01 59.13 77.34 866.18 1297.41 TO - 0.97 GB

Geometric Mean 8.24 0.003 4.57 1.44 17.24 35.66 >49.64 >2.79x

post syn. Adders

64x64 4 0.51 0.004 0.89 0.07 0.22 1.7 3.43 2.02x 3.2 MB
8 0.52 0.003 1.63 0.12 0.27 2.56 3.85 1.50x 3.25 MB

128x128 4 1.07 0.005 3.14 0.2 0.71 5.12 7.59 1.48x 5.5 MB
8 0.97 0.01 5.41 0.37 0.85 7.81 8.72 1.12x 5.62 MB

256x256 4 3.67 0.01 8 0.3 3.62 15.6 19.87 1.27x 12.3 MB
8 3.71 0.01 11.44 0.8 5.94 21.9 25.93 1.18x 14.1 MB

Geometric Mean 1.25 0.002 3.62 0.23 0.96 6.25 8.75 1.40x

pre syn. Adders

64x64 4 0.40 0.002 0.88 0.08 0.3 1.76 3.30 1.90x 2.8 MB
8 0.41 0.006 1.12 0.08 0.32 1.94 3.56 1.84x 3.5 MB

128x128 4 1.1 0.008 3.19 0.2 0.79 5.29 7.26 1.65x 6.9 MB
8 1.32 0.009 3.57 0.42 1.01 6.32 8.31 1.37x 6.98 MB

256x256 4 3.54 0.01 6.24 0.28 4.38 14.45 19.13 1.33x 13.1 MB
8 3.6 0.01 9.52 0.81 5.27 19.21 23.35 1.21x 14.3 MB

Geometric Mean 1.20 0.003 2.96 0.22 1.10 7.11 8.26 1.53x

TABLE 8
CPU time and memory results for debugging of arithmetic circuits with

two dependent bugs. Bugs are inserted in the middle stages of the
design as well as close to primary inputs.

Type Size RG(s) RP(s) TG(s) BL(s) DC(s) Total(s) Mem

post syn. Mul.

8 0.18 0.001 0.1 0.01 0.98 1.09 11.72 MB
16 1.43 0.002 0.35 0.02 2.23 4.04 40.97 MB
32 3.45 0.002 0.96 0.08 13.92 18.39 60.21 MB
64 14.3 0.004 3.77 0.2 77.12 95.4 83.3 MB

128 54.22 0.008 8.06 0.6 241.05 303.93 365 MB
256 310.13 0.012 31.8 36.02 1099.96 1477.92 1.36 GB

pre syn. Mul.

8 0.21 0.001 0.1 0.01 0.91 1.23 8.8 MB
16 1.52 0.001 0.77 0.01 5 7.3 22.4 MB
32 3.88 0.002 1.03 0.08 13.54 18.53 50.32 B
64 13.82 0.003 4.65 0.1 96.3 114.87 79.2 MB

128 59.13 0.005 7.88 0.6 220.22 287.83 293 MB
256 280.04 0.01 19.41 22.05 982.9 1584.45 1.02 GB

post syn. Mul.
64 0.5 0.001 01.18 0.01 0.55 2.24 3.3 MB

128 1.1 0.011 5.4 0.02 3.47 10 7.01 MB
256 3.7 0.011 16.09 0.1 9.42 29.32 11.96 MB

pre syn. Add.
64 0.4 0.003 1.13 0.01 0.53 2.07 2.9 MB

128 1.21 0.008 6.3 0.01 2.36 9.89 8.2 MBB
256 3.5 0.01 10.97 0.08 15.04 27.6 14.01 MB

[12] L. Liu and S. Vasudevan, “Efficient validation input generation in
rtl by hybridized source code analysis,” in Design Automation and
Test in Europe(DATE), 2011, pp. 1–6.

[13] R.E. Bryant and Y.A. Chen, “Verification of arithmetic circuits with
binary moment diagrams,” in Proceedings of Design Automation
Conference (DAC), 1995, pp. 535–541.

[14] H. Mangassarian, A. Veneris, S. Safapour, M. Benedetti and D.
Smith, “A performance-driven qbf-based iterative logic array rep-
resentation with applications to verification, debug and test,” in
IEEE/ACM International Conference on Computer-Aided Design, 2007,
pp. 240–245.

[15] B. Le, H. Mangassarian, B. Keng and A. Veneris, “Non-solution
implications using reverse domination in a modern sat-based
debugging enviroment,” in Design Automation and Test in Eu-
rope(DATE), 2012, pp. 629–634.

[16] S. Mirzaeian, F. Zheng and K. T. Chen, “Rtl error diagnosis using

TABLE 9
CPU time results for the functional rewriting (remainder generation) and
debugging of faulty integer multipliers with one bug. One bug is inserted

in different stages of the design, close to primary inputs (0− 1//4),
middle stages (1/4− 3/4), and close to primary outputs 3/4− 4/4.

Size #Gates Bug. Loc. RG (s) Debugging (s)
TG BL DC Overall

64x64 28K

0− 1/4 16.43 0.07 0.07 0.87 1.01
1/4− 2/4 24.16 0.3 0.1 2.55 2.95
2/4− 3/4 1.35 0.27 0.22 14.65 15.14
3/4− 4/4 0.72 0.06 1.6 8.19 9.85

128x128 132K

0− 1/4 62.23 1.09 0.32 3.51 4.92
1/4− 2/4 256.24 1.29 0.7 20.97 22.96
2/4− 3/4 37.67 0.86 2.14 50.81 53.81
3/4− 4/4 20.41 0.42 3.89 38.03 42.34

TABLE 10
Results of debugging of Booth multipliers (BP-CT-BK). Independent

bugs are inserted in the middle stages of the design as well as close to
the primary inputs.

Size #Gates #Bugs RG (s) TG (s) BL (s) DC (s) Total (s) Mem

16x16 1830 4 143.03 0.76 0.07 1.69 145.55 29.1 MB
8 145.46 1.17 0.1 2.53 149.26 35.5 MB

32x32 7668 4 311.36 2.42 0.8 6.27 320.58 74.3 MB
8 313.51 4.08 1.67 9.06 328.32 96.6 MB

a word-level sat-solver,” in Proc. IEEE Int. Test Conference (ITC),
2008, pp. 1–8.

[17] K. Chang, I. Markov and V. Bertacco, “Accurate rank ordering
of error candidates for efficient hdl design debugging,” in IEEE
Transaction on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2009, pp. 272–284.

[18] U. Repinski, H. Hantson, M. Jenihhin, J. Raik, R. Ubar, G. Di
Guglielmo, G. Pravadelli and F. Fummi, “Combining dynamic
slicing and mutation operators for esl correction,” in Proc. 17th
IEEE Euro. Test Symp, 2012, pp. 1–6.

[19] N. Alimi, Y. Lahbib, M. Machhout, and R. Tourki, “Functional

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868362, IEEE
Transactions on Computers

16

verification of large-integers circuits using a cosimulation-based
approach,” International Journal of Electrical and Computer Engineer-
ing, vol. 7, no. 4, p. 2192, 2017.

[20] M.-H. Haghbayan, B. Alizadeh, A.-M. Rahmani, P. Liljeberg, and
H. Tenhunen, “Automated formal approach for debugging di-
viders using dynamic specification,” in Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), 2014 IEEE International
Symposium on. IEEE, 2014, pp. 264–269.

[21] S. Ghandali, C. Yu, W. Brown, and M. Ciesielski, “Logic debugging
of arithmetic circuits,” in IEEE Computer Society Annual Symposium
on VLSI(ISVLSI), 2015.

[22] N. Shekhar, P. Kalla and F. Enescu, “Equivalence verification of
polynomial datapaths using ideal membership testing,” in IEEE
Transaction on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2006, pp. 1188–1201.

[23] C. Yu, M. Ciesielski, and A. Mishchenko, “Fast algebraic rewriting
based on and-inverter graphs,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2017.

[24] T. Su, C. Yu, A. Yasin, and M. Ciesielski, “Formal verification of
truncated multipliers using algebraic approach and re-synthesis,”
in VLSI (ISVLSI), 2017 IEEE Computer Society Annual Symposium
on. IEEE, 2017, pp. 415–420.

[25] A. Sayed-Ahmed, D. Große, M. Soeken, and R. Drechsler, “Equiv-
alence checking using gröbner bases,” in Formal Methods in
Computer-Aided Design (FMCAD), 2016. IEEE, 2016, pp. 169–176.

[26] C. Yu and M. Ciesielski, “Efficient parallel verification of galois
field multipliers,” in Design Automation Conference (ASP-DAC),
2017 22nd Asia and South Pacific. IEEE, 2017, pp. 238–243.

[27] T. Pruss, P. Kalla, and F. Enescu, “Efficient symbolic computation
for word-level abstraction from combinational circuits for verifica-
tion over finite fields,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 35, no. 7, pp. 1206–1218, 2016.

[28] X. Sun, P. Kalla, T. Pruss, and F. Enescu, “Formal verification of se-
quential galois field arithmetic circuits using algebraic geometry,”
in Design Automation and Test in Europe(DATE), 2015, pp. 1623–
1628.

[29] C. Yu and M. Ciesielski, “Formal verification using don’t-care and
vanishing polynomials,” in VLSI (ISVLSI), 2016 IEEE Computer
Society Annual Symposium on. IEEE, 2016, pp. 284–289.

[30] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms.
Springer, 1997.

[31] O. Wienand, M. Welder, D. Stoffel, W. Kunz and G. M. Greuel, “An
algebraic approach for proving data correctness in arithmetic data
paths,” in Computer Aided Verification (CAV), 2008, pp. 473–486.

[32] F. Farahmandi, B. Alizadeh and Z. Navabi, “Effective combination
of algebraic techniques and decision diagrams to formally verify
large arithmetic circuits,” in IEEE Computer Society Annual Sympo-
sium on VLSI(ISVLSI), 2014, pp. 338–343.

[33] F. Farahmandi and P. Mishra, “Automated debugging of arith-
metic circuits using incremental gröbner basis reduction,” in 2017
IEEE 35th International Conference on Computer Design (ICCD).
IEEE, 2017, pp. 193–200.

[34] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of
multipliers using computer algebra,” in Proceedings of the 17th
Conference on Formal Methods in Computer-Aided Design. FMCAD
Inc, 2017, pp. 23–30.

[35] F. Farahmandi and P. Mishra, “Automated test generation for
debugging arithmetic circuits,” in 2016 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2016, pp. 1351–
1356.

[36] The Cadence SMV Model Checker, Cadence Berkeley Lab, Available
at http://www.kenmcmil.com.

Farimah Farahmandi received her Ph.D. from
the Department of Computer and Information
Science and Engineering (CISE) at the Univer-
sity of Florida in 2018. She received her B.S. and
M.S. from department of Electrical and Com-
puter Engineering (ECE), University of Tehran,
Iran in 2010 and 2013, respectively. Her current
research interests include formal verification and
debugging and post-silicon validation and de-
bug.

Prabhat Mishra is a Professor in the Depart-
ment of Computer and Information Science and
Engineering at the University of Florida. His re-
search interests include embedded and cyber-
physical systems, hardware security and trust,
energy-aware computing, system-on-chip vali-
dation, and post-silicon debug. He received his
Ph.D. in Computer Science and Engineering
from the University of California, Irvine. He has
published 7 books, 25 book chapters, and more
than 150 research articles in premier interna-

tional journals and conferences. His research has been recognized
by several awards including the NSF CAREER Award, IBM Faculty
Award, three best paper awards, and EDAA Outstanding Dissertation
Award. Prof. Mishra currently serves as the Deputy Editor-in-Chief of
IET Computers & Digital Techniques, and as an Associate Editor of
ACM Transactions on Design Automation of Electronic Systems, IEEE
Transactions on VLSI Systems, and Journal of Electronic Testing. He
has served on many conference organizing committees and technical
program committees of premier ACM and IEEE conferences. He is
currently serving as an ACM Distinguished Speaker. Prof. Mishra is an
ACM Distinguished Scientist and a Senior Member of IEEE.

