
FSM Anomaly Detection using Formal Analysis
Farimah Farahmandi and Prabhat Mishra

Department of Computer and Information Science and Engineering
University of Florida, USA

Abstract—Finite state machines (FSMs) control the function-
ality of the overall design. Any deviation from the specified
FSM behavior can endanger the trustworthiness of the design.
This is a critical concern when an FSM is responsible for
controlling the usage or propagation of protected information
(e.g. secret keys) in a secure component. FSM vulnerabilities
can be created by a rogue designer or an attacker by inserting
hardware Trojans in the FSM implementation. The vulnerability
can also be introduced unintentionally by a CAD tool (e.g., when
a synthesis tool is trying to optimize a gate-level netlist). In this
paper, we present an efficient formal analysis framework based
on symbolic algebra to find FSM vulnerabilities. The proposed
method tries to find inconsistencies between the specification
and FSM implementation through manipulation of respective
polynomials. Security properties (such as a safe transition to
a protected state) are derived using specification polynomials
and verified against implementation polynomials. In a case of a
failure, the vulnerability is reported. While existing methods can
verify legal transitions, our approach tries to solve the important
and non-trivial problem of detecting illegal accesses to the design
states (e.g., protected states). We demonstrated the merit of
our proposed method by detecting the vulnerabilities in various
FSM designs, while state-of-the-approaches failed to identify the
security flaws.

I. INTRODUCTION

Integrated circuits (ICs) are deployed in a wide variety of
systems designed for personal use as well as military and
governmental purposes. To ensure security and privacy during
computation and communication utilizing these systems, it is
critical to assure the security of the ICs in these systems.
However, ensuring the integrity of an IC is challenging due
to the diversity of attacks and attack goals. Malicious modi-
fications [1], side channel attacks such as power analysis [2]
and timing analysis [3], debug infrastructure vulnerabilities
[4] and fault injection attacks [5] can be exploited to affect
security of a System-on-Chip (SoC), an Intellectual property
(IP) or a microprocessor. A design can be resilient against
such vulnerabilities when the security is considered from early
design stages including controller and datapath design efforts.

Wide variety of solutions are proposed to protect datapath
components [6], [7], [8], [9]. However, only a few studies
addressed potential integrity issues of control circuits. Control
circuits are required to be resilient against different types of
attacks since they are responsible for controlling the func-
tionality of the overall design and any deviation from the
expected behavior can lead to severe impacts on security of
the whole design. A Finite State Machine (FSM) of a secure
design usually contains protected states which control proper
handling of secret information. Fault injection attacks [5],
existing EDA tools incompleteness [10] as well as designers’
mistakes can compromise the security of a control circuit.

Fig. 1. Overview of FSM anomaly detection approach

An attacker’s goal is to utilize existing FSM vulnerabilities
to bypass authorized states and access the protected states
illegally to weaken the security of the design or leak secret
information such as cryptographic keys. Sunar et al. have
shown that the secret key of RSA encryption algorithm [11]
can be leaked when fault injection attack is used against the
implementation of the Montgomery ladder algorithm [12]. It
has been shown that some FSM encodings are more vulnerable
toward fault injection attacks and an adversary can use the
existing encoding vulnerabilities to have unauthorized access
to the protected states [13]. Therefore, it is vital to identify and
remove the vulnerabilities in the FSM architecture to protect
them against any susceptibilities.

In this paper, we propose a formal approach to identify vul-
nerabilities in an FSM using symbolic algebra. Our proposed
method models the specification of a given FSM as a set of
polynomials (Fspec) such that each polynomial is responsible
for describing all of the valid states that can be reached.
Each output of the FSM also can be represented using one
specification polynomial. The specification polynomials can be
derived from RTL codes as well as design documents. We also
partition the gate-level implementation of an FSM based on
the boundary of flip-flops, primary inputs, primary outputs and
fanout-free regions. We model each region by a polynomial
and add it to the set of implementation polynomials (Fimp).
In the next step, we use Gröbner basis theory [14] to check the
equivalence between two sets Fspec and Fimp. We reduce each
specification polynomial Fspeci using a set of implementation

polynomials. If the reduction leads to a non-zero remainder,
there are some vulnerabilities in implementation of Fspeci.
Every assignment that makes the remainder non-zero reveal
the conditions that can activate the hidden malfunction.

Our approach is fully automated and it is guaranteed to
find hard-to-detect FSM vulnerabilities in the implementation
of an FSM when existing equivalence checking approaches
fail. Experimental results demonstrate the effectiveness of our
approach. Figure 1 shows the overall flow of our approach
which the anomaly detection can be formally performed using
our proposed equivalence checking method.

The rest of the paper is organized as follows. We provide an
overview of related work in Section II. Section III discusses
about equivalence checking using symbolic algebra followed
by description of threat model in Section IV. Section V
illustrates our approach to detect FSM vulnerabilities. We
show the effectiveness of our approach using the experimental
results in Section VI . Finally, conclusion is provided in
Section VII.

II. RELATED WORK

There are limited efforts to identify and address the security
vulnerabilities of a control circuit. Sunar et al. used Triple
Module Redundancy (TMR) and parity checking methods to
protect FSM of encryption algorithms against fault injection
attacks [12]. However, the proposed technique introduces large
area overhead (200%) and cannot detect other adversarial
models such as hardware Trojans and vulnerabilities intro-
duces by synthesis tools. In [15], a multilinear code selection
algorithm is used to make cryptographic algorithm robust
against fault injection attacks. However, this technique is
not resilient against fault injection vulnerabilities caused by
synthesis tools [10]. It has been shown that synthesis tools may
insert additional don’t care states in implementation of FSMs
by using RTL don’t care conditions and create assignments to
optimize the gate-level netlist. At the same time, an adversary
can use don’t care states as a backdoor to access protected
states and weaken the security of the overall design. In [10],
authors use reachability as a trust metric to identify gate-level
paths to protected states which do not exist in the RTL design.
However, authors do not evaluate actual vulnerabilities caused
by don’t care states. They proposed an architectural change to
state flip-flops in order to remove the access to the protected
states from unprotected ones. Their proposed solution limits
the functionality of the design. In [16], authors used mutation
testing to detect existing hardware Trojans in unspecified
functionality. However, mutation testing is very slow, and it
may require significant manual intervention. Nahiyan et al.
have proposed a state reachability analysis using ATPG tools
[13]. They generate test patterns using the principle of n-
detect-test [17] to extract the state transition graph (STG)
of a given circuit. However, this option does provide any
guarantees, e.g., in case one of their benchmarks they could
not extract the whole STG. Sun et al. have proposed an FSM
traversal technique using symbolic algebra [18]. However,
their technique can only check the reachable states from a
given state (e.g., initial state) and their technique cannot detect

don’t care states that may be introduced by synthesis tools.
Similarly, they cannot detect hardware Trojans inserted in
FSMs outputs. In this paper, we present a scalable formal
approach that enables efficient FSM anomaly detection in state
transition functions as well as FSM outputs.

III. EQUIVALENCE CHECKING USING GRÖBNER BASIS
REDUCTION IN COMBINATIONAL CIRCUITS

From the security point of view, it is extremely important
to make sure that the design performs exactly the intended
specification, nothing more nothing less. There are equiv-
alence checking methods based on symbolic algebra that
are successful to detect deviations from the specification for
combinational circuits specially arithmetic circuits [19], [20],
[21]. These methods map the equivalence checking problem to
ideal membership testing and solve the problem using Gröbner
Basis theory.

In order to check the equivalence between the implementa-
tion and specification of an arithmetic design using Gröbner
Basis reduction, the specification and the implementation
should be modeled as polynomials first. Specification poly-
nomial Fspec represent the word-level (decimal) function of
the arithmetic circuit where its variables are a combination of
primary inputs and primary outputs. For instance, to represent
the specification polynomial of a n-bit adder with primary
inputs A = {a0, a1, ..., an−1} and B = {b0, b1, ..., bn−1} and
primary output S = {s0, s1, ...sn}, S = A + B can be used.
Polynomial Fspec can also be written as (2n.sn + ...+2.s1 +
s0)−((2n−1.an−1+ ...+2.a1+a0)+(2n−1.bn−1+ ...+2.b1+
b0)) = 0 where {ai, bi, si} can be either zero or one (decimal
values). Gate-level implementation of an arithmetic circuit can
be modeled as a set of polynomials (Fimp) by converting each
gate to one polynomial as shown in Equation 1. Each variable
xis shows the gate input and each variable yis shows the gate
output where both input and output can get either zero or one
decimal values and xi

2 = xi (same for yi).

y1 = ¬x1 → y1 = (1− x1),

y2 = x1 ∧ x2 → y2 = x1.x2,

y3 = x1 ∨ x2 → y3 = x1 + x2 − x1.x2,

y4 = x1 ⊕ x2 → y4 = x1 + x2 − 2.x1.x2

(1)

To check the equivalence of fspec and the gate-level imple-
mentation, fspec is reduced over implementation polynomials
(Fimp) until it results in either zero polynomial or a non-zero
polynomial (remainder) that contains only primary inputs is
reached. The non-zero remainder shows that the arithmetic cir-
cuit implementation does not perform the exact specification.
Therefore, the implementation is not trustworthy and there
are some malfunctions in the gate-level implementation of the
arithmetic circuit.
Example 1: Suppose that we want to verify the function-
ality of a full-adder implemented as shown in Figure 2.
The specification polynomial can be formulated as: fspec :=
2 ∗ Cout + S − (A + B + Cin) = 0 and implementation
polynomials are computed based on Equation 1. The reduction
procedure starts by substituting the most significant primary
output using implementation polynomials output until a zero

remainder or a polynomial contains only primary inputs is
achieved (procedure is shown in Equation 2). Note that re-
duction procedure follows the topological order of the circuit
as: {Cout, S} > {W3} > {W2,W1} > {A,B,Cin}. The
zero remainder shows the success of the gate-level netlist in
implementing the specification polynomial and trustworthiness
of the implementation.

step0(fspec) : 2.Cout + S −A−B − Cin

step1 : S − 2.w3.w2 + 2.w3 + 2.w2 −A−B − Cin

step2 : 2.w2 + 2.w2.A.B2.w1.Cin+ w1 + 2.A.B −AB

step3(remiander) : 0

(2)

Fig. 2. Gate-level netlist of a full-adder

IV. THREAT MODEL

In this section, we describe different categories of FSM
vulnerabilities and show how an adversary can take advantage
of these vulnerabilities to threaten the integrity of the overall
design.

A state machine can be defined with six characteristics: an
initial state Sinit, set of possible states S where Sinit ∈ S,
set of possible input events I, a state transition function
(FT) that maps combination of states and inputs to states
(FT : S × I → S), a set of output events (O) and an
output function (FO) that maps states and inputs to outputs
(FO : S × I → O). Based on the function FT which defines
transitions, each state Si can be accessed through a set of
immediate, authorized states as well as a set of specific input
events. Set ASi = {(Sj , Ij)|Sj ∈ S & Ij ∈ I} shows legal
conditions to access state Si and set AS shows all of the legal
ways to access states S. If state Si can be accessed through
the condition (Sm, Im) where (Sm, Im) /∈ ASi

, it is a threat to
the integrity of the design. In other words, state Si should not
be accessed through some illegal conditions/states which do
not exist in the specification. From the security perspective, it
is important that a design exactly performs as intended in the
specification, nothing more nothing less. The extra access path
to state Si, (Sm, Im) may endanger the integrity of the design
as it may create a backdoor to access the critical secrets/assets.
In this paper, we consider illegal access paths as threat
model, and our goal is to identify them using symbolic
algebra.

The illegal access ways may be introduced by synthesis
tools [10]. Behavioral specification (e.g. RTL) of an FSM
may contain don’t care conditions where the assignment to
the next state or the next expected output is not defined (we
call such FSMs incomplete FSMs). A synthesis tool takes an

incomplete FSM and tries to assign deterministic values to the
don’t care conditions and transitions to generate an optimized
circuit. As a result, a synthesis tool may introduce extra states
and transitions to the gate-level implementation of the FSM
which do not exist in the behavioral specification. Formally,
a synthesis tool may modify the set AS and convert it to A′

S.
The extra set of access paths to the states of S can be computed
as: AM = A′

S − AS.

Set AM (malicious access ways) can also be created/modi-
fied by a rogue designer or an attacker by inserting hardware
Trojan in the FSM behavioral description as well as in the
gate-level implementation of the FSM. The primary goal of the
attacker is to create a backdoor to particular FSM states which
may be triggered via an extremely rare input condition. The
created backdoor may lead to a bypass of security protection of
the design or create a denial of service. Moreover, malicious
access ways can be set up by unintentional mistake of the
designer. Example 2 illustrates potential threats in an FSM.

Example 2: The state transition diagram of a simple FSM
is shown in Figure 3. The FSM has three states: G, C
and protected state O representing with binary encoding 01,
10, and 00 respectively as shown in Figure 3. The FSM is
responsible for checking a password before starting a specific
operation. Operation state (O) should be accessed only from
check password state (C) when a password is entered, and
it is valid (a = 1&b = 1). An adversary may use the
unspecified conditions to insert illegal transitions to gain
access to the operation state (protected state) from the state
G without even entering the correct password to bypass the
security protection (a = 1&b = 0). On the other hand, the
synthesis tool or the designer mistake can also introduce some
unintentional illegal access ways (don’t care states D) to the
protected state and compromise the security of the design.
With respect to the specification, AO should be equal to:
{(C, “a = 1&b = 1”). However, there are illegal access
ways to state O in FSM implementation which is equal to:
AMO

= {(D, “a”), (G, “a = 1&b = 0”)}. An adversary can
compromise the security of the design by exploiting the ex-
isting vulnerabilities and attack the FSM. One of the possible
attacks is fault injection attack [13]. The strategy is that the
attacker tampers operating characteristics such as clock signal
frequency, operating voltage or working temperature hoping
to change different path delays and force the FSM to capture
next state incorrectly. One example would be to force the FSM
to go to the don’t care states which have access to protected
states or attack target states. For instance, an attacker can
inject a fault during transition 01 → 10 (G → C) to end
up in don’t care state 11 which has an immediate access to
the protected state O and bypass password checking process
in Example 2. The other possible attack is that the adversary
inserts hardware Trojan by manipulating state transition graph
in order to access certain states when a specific input event
is triggered. In this case, the adversary is considered as an
in-house rogue designer or an untrusted vendor/foundry. For
instance, Example 2 shows that an adversary has inserted a
Trojan that provides an illegal access way to state O from

state G. The Trojan is typically hard-to-activate (from the
unspecified design space) with negligible effect on the design
constraints such as area and power to avoid detection from
existing verification and debug flow.

Fig. 3. The state diagram for checking a password in order to perform a
specific operation. Potential vulnerabilities are shown with dotted lines.

Based on above observations, any deviation of FSM imple-
mentation from the specification (including extra access ways)
can endanger the overall design integrity. In the rest of this
paper, we propose a promising approach to analyze FSMs to
find potential malicious functionality.

V. FINITE STATE MACHINE ANOMALY DETECTION

Although the presented approach of Section III is promising
for verification of arithmetic circuit, applying it on a general
sequential circuit is challenging due to several reasons. First,
formulating the specification of a general circuit cannot be
modeled as one simple and comprehensive polynomial. The
specification may be modeled as a set of polynomials. How-
ever, finding the corresponding parts which are only responsi-
ble for implementing a special specification polynomial is not
straightforward. Second, the implementation of a sequential
circuit is not acyclic and it contains several loops which make
the reduction operation infinite. Finally, time unrolling of the
implementation is not efficient since it increases the design
complexity and makes the equivalence checking inefficient.
Moreover, existing Trojan may be activated after a large
number of cycles (since the trigger condition is rare), therefore,
there is no specific information about the required number of
unrolling. In this paper, we try to address the above-mentioned
challenges to apply symbolic algebra to verify the trustwor-
thiness of any general FSM. We not only check the given
FSM for the correct expected behavior, but we also analyze
the FSM to find any potential malicious extra access ways that
may endanger the security of the FSM (nothing more). Finding
extra access path especially from don’t care states cannot be
found using any formal methods such as model checkers since
they are not accessed through the normal operation path. To the
best of our knowledge, this is the first attempt in utilizing sym-
bolic algebra in finding vulnerabilities in FSMs. The remainder

of this section describes the different parts of our approach:
deriving specification polynomials, generating implementation
polynomials and performing equivalence checking in order to
ensure the correctness of implementation and finding potential
extra vulnerabilities.

A. Deriving Specification Polynomials

The specification of an FSM can be extracted from its
state transition diagram or from a high-level description of
the design (e.g., HDL modules). State transition graph can
be derived from the design documentation as well as other
high-level behavioral description of FSM such as RTL codes.
In other words, deriving specification polynomials does not
require a golden design/netlist.

Modeling the whole FSM using only one specification poly-
nomial is not possible without considering the time notation
in the specification polynomial as transitions between different
states may be dependent on binary values of a specific input
variable over different clock cycles. For example, as it is shown
in Figure 3, state C can be accessed from path G → C
when in two consecutive clock cycles t1 and t1 + 1 such
that a = 0 in t1 and a = 1, b = 1 in t1 + 1. Writing these
conditions as a polynomial (part of the overall specification
polynomial) without considering the timing will lead to a
zero polynomial as (1 − a).a.b = 0. However, if we add
timing notations to our variables, the implementation also has
to be time unrolled to match with the specification which
increases the complexity of the equivalence checking problem.
As a result, representing the functionality of an FSM using
one specification polynomial is not possible. We propose
an approach to model the specification of the FSM using
polynomials without time unrolling the design.

Transitions of an FSM can be decomposed as: FT =
n⋃

i=1

ASi

where n is the number of states and ASi
shows all of the

possible access ways of state Si and FT is the transition func-
tion of the FSM. To derive a set of specification polynomials
which represent the whole FSM, we model each of ASi as
one polynomial representing the legal access ways to state Si

and we add it to the set Fspec.
A valid transition to state Si happens when the current state

is one of the authorized states and the corresponding input
conditions are valid. In other words, Si will be reached in the
next clock cycle when the current state is Sj and condition
Cj→i where (Sj , Cj→i) ∈ ASi

are evaluated to true. Note
that, we show the value of variable x in the next cycle using
x′ notation. Therefore, transition Sj → Si is modeled to a
polynomial as: fSj→Si

: Si
′−(Sj .Cj→i) = 0. The polynomial

of each of the conditions exits in ASi should be XORed to
each other to derive a polynomial representing the whole ASi

since only one of them should be valid at the same time. We
illustrate our approach using Example 3.

Example 3: In order to extract specification polynomials
for FSM shown in Figure 3, we consider each of the states
independently and write a polynomial to represent conditions
which update the next value of the state. For example, state
O should only be accessed from state C when a = 1 and

b = 1 or when the current state is state O and input a is equal
to one. Since it should be accessed only from one of these
conditions at a time, the conditions should be XORed to each
other to show the effect of one condition at a time (the only
exception is the condition of a = 0 in state G that will be
ORed to other conditions since it works as the reset signal).
The O′ shows the next value of state O. The specification of
the FSM shown in Figure 3 can be modeled as a set of three
abstract polynomials (Fspec = {fG, fC and fO}) as shown in
Equation 3.

Fspec : {fG : G′ − ((1− a) ∨ (C.(1− a.b)⊕O)) =

G′ − (1− a+ a.O + 2.a.b.C.O + a.C − 2.a.C.O − 1.a.b.C) = 0

fC : C′ − a.b.G = 0

fO : O′ − (a.b.C) = 0}

(3)

We will describe how specification polynomials are used
to check security properties of an FSM in Section V-C.
Before performing the equivalence checking, we need to refine
specification polynomials to apply proposed FSM equivalence
checking process since the proposed method requires that
specification variables’ names be the same as the correspond-
ing variables in the implementation. We refine specification
polynomials based on the FSM encoding style as well as corre-
sponding names of state flip-flops in the implementation (name
mapping between flip-flop names and corresponding variables
in specification polynomials). We refine the variables which
represent states in specification polynomials based on naming
and encoding information that can be found in the high-level
description of the design such as RTL modules as we describe
in Example 4. As a result, the specification of FSM outputs
can also be modeled with word-level specification polynomials
based on state variables as well as primary inputs.

Example 4: Suppose that the RTL code shown in Listing 1
is the RTL version of the state machine shown in Figure 3. We
can see that states G, C and O are encoded as {01, 10, 00}
respectively. The state variable and next states are presented
using variables {s0, s1} and {n0, n1}. Therefore, the variables
shown in Equation 3 can be updated based on the above-
mentioned information. For instance, variable G and next state
variable G′ can be modeled as (1 − n1).n0 and (1 − s1).s0,
respectively. As a result, the specification polynomials shown
in Equation 3 can be rewritten as shown in Equation 4.
Note that, considering C encoded as s1.(1 − s0) and O as
(1 − s1).(1 − s0), the term −2.C.O as well as 2.a.b.O.C
of FG in Equation 3 are evaluated in updated specification
polynomials).

Fspec : {fG : (1− n1).n0 − (1− a.b.s1 + a.b.s0.s1 − a.s0) = 0

fC : n1.(1− n0)− (a.b.(1− s1).s0) = 0,

fO : (1− n1).(1− n0)− (a.b.s1.(1− s0)) = 0}
(4)

Specification polynomials can be extracted directly from
the RTL modules by using some specific rules. The logical
operations in If statements can be mapped to polynomials
based on Equation 1. For example, by considering the en-
coding, line G : if(a == 1′b1&&b == 1′b1)n <= C can
be modeled as equation n1.(1 − n0) = a.b.(1 − s1).s0 In

the next step, the corresponding polynomials of If Then Else
are XORed together to achieve the exclusive nature of these
statements. The derived specification polynomials will be used
in the equivalence checking procedure.

Listing 1. RTL module of FSM shown in Figure 3.
module fsm (input c lock , a , b ; output v a l i d) ;
reg [1 : 0] s , n ;
parameter O=2 ’ b00 , G=2 ’01 , C=2 ’ b10 ;
always @(a , b , s) begin
case (s)

G: i f (a == 1 ’ b1 && b == 1 ’ b1) begin
n <= C ;

end e l s e i f (a == 0) begin
n <= G; end

C : i f (a == 1 ’ b1 && b =1 ’ b1)
n <= O;

e l s e
n <= G; end

O: n <= G;
end
always @(posedge c l o c k)
begin

i f (a ==1 ’ b0) s <= G;
e l s e s <= n ; end

end
endmodule

B. Generation of Implementation Polynomials

Our goal is to partition the design and find the regions
that are responsible for implementing each of the states and
represent them as implementation polynomials. In order to
perform this task, a mapping between state names and their
corresponding gate-level state flip-flop names is needed. Here,
we assume that the name of state inputs, outputs as well
as state flip-flops are same between specification (RTL, state
diagram, etc.) and implementation, or name mapping can be
done based on existing methods in [22]. For the ease of the
illustration, we explain how to extract the implementation
polynomials when the FSM encoding is binary-encoding. Our
proposed approach works for any state encoding.

After name mapping, we partition the gate-level implemen-
tation of the FSM based on state flip-flops. The state region
construction starts from the input of the corresponding state
flip-flop. The region construction continues with the inputs
of the state flip-flop and moves backward recursively until it
reaches to primary inputs or flip-flop outputs. The constructed
region is converted to a polynomial by converting each of its
gates to a polynomial as shown in Equation 1 and combining
them to each other to create one polynomial representing the
whole region. We illustrate our approach using Example 5.
Example 5: Figure 4 shows the gate-level netlist which im-
plements the FSM shown in Figure 3. In the implementation,
FSM states are encoded using binary scheme (two flip-flops
are used to implement the functionality of three states shown
in the state diagrams of Figure 3). The implementation is
partitioned starting from the input of state flip-flop ni and it
is continued until reaching either primary inputs or outputs of
state flip-flops (si). In the next step, the corresponding poly-
nomial of each partition is derived by combining polynomials
of each gate in the region to represent the functionality of

next state variables (ni). The implementation polynomials are
shown in Equation 5.

Fimp : {n0 − (1− a.b.s1 − a.s0 + a.b.s0.s1) = 0,

n1 − (a.b.s0 − a.b.s0.s1) = 0}
(5)

Fig. 4. Implementation of FSM in Figure 3 using binary encoding.

When a gate’s output goes to more than one gate, it is
called a fanout. A fanout-free region is a set of gates that
are directly connected together. Therefore, we partition the
implementation to fanout-free regions and model each of
them as one polynomial. The corresponding polynomials of
each next state variable (nis) can be computed by combining
the polynomials of the corresponding fanout-free regions.
Polynomials of fanout-free regions are calculated in order to
reduce the efforts of implementation polynomial generation
since one fanout-free region may be used in constructing the
functionality of several nis. Note that, in the implementation
shown in Figure 4, the functionality of each ni is constructed
with only one fanout-free cone.

Note that, the implemented functionality of FSM’s outputs
also can be formulated as a function of FSM inputs and states
and presented as polynomials. In order to find implementation
polynomials corresponding to FSM’s outputs, each output gate
is considered and traversed backward until it reaches to either
input/output of state flip-flops or FSM inputs. The traversed
gates are modeled using one polynomial showing the func-
tionality of the corresponding output, and those polynomials
are added to set Fimp.

C. Equivalence Checking

From the security point of view, it is important to make
sure that the implementation of a design performs exactly its
specification. We check the functional equivalence between
a control logic specification and its implementation in order
to establish the trust of the control logic. In this paper, we
formulate the FSM equivalence checking as ideal membership
testing based on Gröbner Basis theory. Implementation poly-
nomials Fimp are formed as an ideal I based on particular
order > (the topological order which exists in the imple-
mentation). FSM implementation is trustworthy if all of the
specification polynomials in set Fspec are the member of ideal
I =< Fimp >.

In order to check the trustworthiness of the implementation,
each specification polynomial Fspeci from set Fspec is reduced

over polynomials in Fimp. All of the variables in specification
polynomials (except primary inputs and flip-flops’ outputs) are
substituted with the corresponding functionality of the variable
from the implementation polynomials. Note that, the reduction
procedure is done using sequential polynomial division as
shown in Section III. The reduction process continues until
a zero remainder or a non-zero polynomial which contains a
combination of primary inputs and flip-flop outputs is reached.
If reduction Fspeci over set Fimp results in a zero remainder,
it means that Fspeci belongs to the ideal I =< Fimp >.
In other words, set Fimp has successfully implemented the
specification Fspeci. Otherwise, the implementation of Fspeci
is not trustworthy (implementation is not equal to specifica-
tion). If all of the remainders are equal to zero polynomials,
it means that the overall implementation is equal to FSM’s
specification since set Fspec includes specification of the FSM
states as well as specification of FSM’s outputs (specification
polynomials cover all specification space). Algorithm 1 shows
the equivalence checking procedure.

Algorithm 1 FSM Equivalence Checking Algorithm
1: procedure EQUIVALENCE–CHECKING
2: Input: Gate-level netlist imp and specification polyno-

mials Fspec

3: Output: FSM anomalies E
4: Fimp=findImplementationPolynomials(imp)
5: for each fspeci ∈ Fspec do
6: ri = reduction of fspeci over Fjs ∈ Fimp

7: if (ri! = 0) then
8: Ti = findNonZeroAssignments(ri)
9: E.put(fspeci,Ti)

return E

Algorithm 1 takes the gate-level netlist imp of a given
FSM as well as the specification polynomials Fspec as inputs
and tries to find any existing anomalies in the FSM. First, it
computes the implementation polynomials (Fimp) as described
in Section V-B (line 4). In the next step, every specification
polynomial fspeci (corresponding to state Si) in Fspec is
reduced over a set of implementation polynomials Fjs using
Gröbner Basis theory in order to find the remainder ri (line 6).
If the remainder is non-zero, it means that there are some ma-
licious functionality in implementing specification polynomial
fspeci . Every assignments that make the remainder non-zero,
activates the malicious access path to Si. The Algorithm stores
the anomalies in the map E (lines 7-9).

Example 6: Consider the specification polynomials of Equa-
tion 4, gate-level netlist in Figure 4 as well as implementation
polynomials shown in Equation 5. The Equation 6 shows the
equivalence checking procedure with respect to topological
order {n1, n0} > {s1, s0, a, b}. Note that, reducing of vari-
ables {n1, n0} happen at the same time as their orders are the
same. However, we show the reduction of Fspec1 in two steps

to illustrate the procedure better.

Fspec1 : fG : (1− n1).n0 − (1− a.b.s1 + a.b.s0.s1 − a.s0)

stp11 : (1− a.b.s0 + a.b.s0.s1).n0 − (1− a.b.s1 + a.b.s0.s1 − a.s0)

stp12 : (1− a.s0 − a.b.s1 + a.b.s0.s1)− (1− a.b.s1 + a.b.s0.s1 − a.s0) = 0

Fspec2 : fC : n1.(1− n0)− (a.b.(1− s1).s0)

stp21 : (−a.b.s0.s1 + a.b.s0)− (a.b.(1− s1).s0) = 0

Fspec3 : fO : (1− n1).(1− n0)− (a.b.s1.(1− s0))

stp31 : (a.s0 − a.b.s0 + a.b.s1)− (a.b.s1 − a.b.s1.s0) =

(remainder) : a.s0 − a.b.s0 + a.b.s0.s1
(6)

As shown in Equation 6, specification polynomials of states
G and C are reduced to zero which means that they are
safely implemented by the gate-level netlist. However, the
reduction of specification polynomial of the protected state
O results in a non-zero remainder. The remainder reveals
potential vulnerabilities in the gate-level implementation of
the design to access the protected state O. Every assignment
that makes the remainder non-zero, discloses an unauthorized
access path to the state O. Table I shows the malicious access
paths. As it can be observed from Table I, don’t care state
{s1, s0} = 2′b11 can access the protected state O due to
synthesis tool optimization (when input a is true). There is
another malicious access path to the state O from state G
when a = 1 and b = 0. This extra access is a hardware Trojan
that was inserted by an adversary or a rogue designer.

TABLE I
MALICIOUS ACCESS PATHS TO THE PROTECTED STATE O SHOWN IN

FIGURE 3

s1 s0 a b
1 1 1 X
0 1 1 0

VI. EXPERIMENTS

A. Experimental Setup

In order to evaluate the effectiveness of our FSM anomaly
detection approach, we have implemented the proposed Al-
gorithms using Java. Our experiments were run on a PC
with Intel core i7 and 16 GB memory. We have applied
our method on various FSM benchmarks from OpenCores
[23]. The benchmarks are described using RTL modules
(that we treat as the specification). To obtain the gate-level
implementation, we synthesize RTL modules using Synopsys
Design Compiler [24]. We extract specification polynomials
from RTL modules of FSM benchmarks considering their
state transitions and output assignments. We have implemented
a Java program such that we define the valid transitions to
states in the form of abstracted polynomials and it generates
one specification polynomial representing all of the logical
transitions to a given state. The same approach was used
to produce the specification polynomials for FSM outputs.
On the other hand, implementation polynomials are driven
automatically from the synthesized gate-level netlist using
our proposed framework. In order to generate implementation
polynomials, gate-level netlist is partitioned into the fanout-
free regions which are restricted to flip-flops boundaries as

well as primary input and primary outputs. We use fanout-free
regions to reduce the number of implementation polynomials.
We reduce specification polynomials over a set of implemen-
tation polynomials and each non-zero remainder represents an
FSM security threat. The goal is to find the assignments to
activate the vulnerabilities (if any).

B. Results

We have conducted two sets of experiments based on
whether the vulnerability is introduced by the synthesis tool
(unintentional) or an attacker (intentional). In the first set of
experiments, the gate-level implementations are Trojan-free,
and all the potential vulnerabilities are caused by the synthesis
tool. Note that different encoding styles and values can create
different vulnerabilities. In the second set of experiments, we
have inserted hardware Trojans in state transitions as well
as state outputs of the implementations in order to show the
effectiveness of our approach. The results are shown in Table II
and Figure 5, respectively.

Table II represents the result of proposed FSM equivalence
checking approach for eight different benchmarks. The first
column shows the type of the benchmark. The second column
represents the encoding style of the FSM design. We have
considered binary and one-hot encoding methods to show
that our proposed approach is not dependent on the encoding
approach. The third, fourth and fifth columns represent the
number of gates, number of state flip-flops, and the number of
states, respectively. The sixth column represents the number of
transitions in the FSM design. The next two columns indicate
the number of don’t care states and don’t care transitions that
our method finds, respectively. Note that our method does
not report the don’t care states that are not connected to any
other states. Finally, the last column shows the CPU time
that our proposed equivalence checking (EQ) approach to find
anomalies in FSM benchmarks.

To show that our proposed approach can also detect hard-
ware Trojans inserted in the state transition function as well as
in the logic that generates the outputs of the FSM, we inserted
hardware Trojans by exploiting the unspecified functionality
of different benchmarks. Figure 5 shows the required time to
detect the injected Trojan. The attributes of the benchmarks
are the same as shown in the Table II.

Fig. 5. Time required to detect hardware Trojans in output logic and state
transition function.

TABLE II
RESULT OF THE PROPOSED FSM ANOMALY DETECTION TECHNIQUE USING EQUIVALENCE CHECKING.

Benchmark Encoding #Gates #FF #Sts #Trans. Our Approach
DC Sts DC Tran. EQ (s)

TAP controller One-Hot 136 16 16 33 3 6 80.63
AES Encryption One-Hot 88 5 5 11 0 0 6.26
AES Encryption Binary 60 3 5 11 3 6 5.03
RSA Encryption One-Hot 114 7 7 9 0 0 18.48
RSA Encryption Binary 76 3 7 9 1 1 6.2
SHA Digest One-Hot 153 7 7 47 121 121 50.89
multiplier Controller binary 52 3 5 8 3 3 1.85
SAP controller Binary 135 4 12 25 0 0 17.23

The experimental results demonstrated that our approach
could detect the hidden vulnerabilities introduced by synthesis
tool optimization while Formality fails to detect them. Note
that some state encodings are more likely to have vulnerabili-
ties caused by synthesis tools. For example, the synthesis tools
tend to map all of the don’t care states to a state with all zero’s
encoding (e.g. 3’b000) assuming that the state represents reset
or ideal state. If the protected state is mapped using this
encoding, there may be a direct access to the protected state
from some don’t care state caused by the synthesis tool.

VII. CONCLUSION

It is critical to make sure that FSMs are correctly imple-
mented, and there is no deviation from the specified func-
tionality of the FSM since any unexpected functionality can
endanger the integrity of the whole design. FSM vulnerabilities
can be caused intentionally through an adversary by inserting
hardware Trojan in the implementation or unintentionally
using CAD tools such as synthesis tools. In this paper,
we presented an approach to formally detect anomalies in
finite state machines using symbolic algebra. Our proposed
approach models the specification of an FSM as a set of
polynomials such that each polynomial represents all of the
valid transitions to one of the states of the FSM. We modeled
the implementation of an FSM as a set of polynomials. We
check the equivalence of the specification polynomials and
implementation polynomials using Gröbner basis theory. We
have showed our approach can detect hidden vulnerabilities
created by both synthesis tools or an adversary.

VIII. ACKNOWLEDGMENTS

This work was partially supported by grants from National
Science Foundation (CNS-1441667), Semiconductor Research
Corporation (2014-TS-2554) and Cisco.

REFERENCES

[1] R. Karri, J. Rajendran, K. Roseland, and M. Tehranipoor, “Trustwor-
thy hardware: Identifying and classifying hardware trojans,” in IEEE
Computer, 2010, pp. 39–46.

[2] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual
International Cryptology Conference. Springer, 1999, pp. 388–397.

[3] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Annual International Cryptology Conference.
Springer, 1996, pp. 104–113.

[4] J. Backer, D. Hély, and R. Karri, “Secure design-for-debug for systems-
on-chip,” in IEEE International Test Conference (ITC). IEEE, 2015,
pp. 1–8.

[5] E. Biham and A. Shamir, “Differential fault analysis of secret key cryp-
tosystems,” in Annual International Cryptology Conference. Springer,
1997, pp. 513–525.

[6] J. Rajendran, V. Vedula, and R. Karri, “Detecting malicious modifica-
tions of data in third-party intellectual property cores,” in Proceedings
of the 52nd Annual Design Automation Conference. ACM, 2015, p.
112.

[7] X. Guo, R. G. Dutta, P. Mishra, and Y. Jin, “Scalable soc trust
verification using integrated theorem proving and model checking,” in
IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), 2016.

[8] F. Farahmandi, Y. Huang, and P. Mishra, “Trojan localization using
symbolic algebra,” in Design Automation Conference (ASP-DAC), 2017
22nd Asia and South Pacific. IEEE, 2017, pp. 591–597.

[9] Y. Huang, S. Bhunia, and P. Mishra, “Mers: statistical test generation for
side-channel analysis based trojan detection,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 130–141.

[10] C. Dunbar and G. Qu, “Designing trusted embedded systems from finite
state machines,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 13, no. 5s, p. 153, 2014.

[11] E. Brickell, “A survey of hardware implementations of rsa,” in Advances
in CryptologyCRYPTO89 Proceedings. Springer, 1990, pp. 368–370.

[12] B. Sunar, G. Gaubatz, and E. Savas, “Sequential circuit design for
embedded cryptographic applications resilient to adversarial faults,”
IEEE Transactions on Computers, vol. 57, no. 1, pp. 126–138, 2008.

[13] A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and M. Tehranipoor,
“Avfsm: a framework for identifying and mitigating vulnerabilities in
fsms,” in Proceedings of the 53rd Annual Design Automation Confer-
ence, 2016, p. 89.

[14] D. Cox, J. Little, and D. O’shea, Ideals, varieties, and algorithms.
Springer, 1992, vol. 3.

[15] Z. Wang and M. Karpovsky, “Robust fsms for cryptographic devices re-
silient to strong fault injection attacks,” in 2010 IEEE 16th International
On-Line Testing Symposium. IEEE, 2010, pp. 240–245.

[16] N. Fern and K.-T. T. Cheng, “Detecting hardware trojans in unspecified
functionality using mutation testing,” in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design. IEEE Press,
2015, pp. 560–566.

[17] S. C. Ma, P. Franco, and E. J. McCluskey, “An experimental chip to
evaluate test techniques experiment results,” in Test Conference, 1995.
Proceedings., International. IEEE, 1995, pp. 663–672.

[18] X. Sun, P. Kalla, and F. Enescu, “Word-level traversal of finite state
machines using algebraic geometry,” in High Level Design Validation
and Test Workshop (HLDVT), 2016 IEEE International. IEEE, 2016,
pp. 142–149.

[19] X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, and P. Mishra, “Pre-
silicon security verification and validation: A formal perspective,” in
Proceedings of the 52nd Annual Design Automation Conference. ACM,
2015, p. 145.

[20] A. Sayed-Ahmed, D. Große, M. Soeken, and R. Drechsler, “Equivalence
checking using grobner bases,” 2016.

[21] F. Farahmandi and B. Alizadeh, “Groebner basis based formal ver-
ification of large arithmetic circuits using gaussian elimination and
cone-based polynomial extraction,” Microprocessors and Microsystems,
vol. 39, no. 2, pp. 83–96, 2015.

[22] T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering for high-
level functionality reconstruction,” in 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2016, pp. 655–660.

[23] OpenCores, http://opencores.org.
[24] https://www.synopsys.com/support/training/rtl-synthesis/

design-compiler.html.

