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Verification of arithmetic circuits is essential as they form the main part of many practical designs such as
signal processing and multimedia applications. In these applications, the size of the datapath could be
very large so that contemporary verification methods would be almost incapable of verifying such
circuits in reasonable time and memory usage. This paper addresses formal verification of large integer
arithmetic circuits using symbolic computer algebra techniques. In order to efficiently verify gate level
arithmetic circuits, we model the circuit and the specification with polynomial system and the verifica-
tion problem is formulated as membership testing of the given specification polynomial in corresponding
ideal of the circuit polynomials. The membership testing needs Groebner basis reduction. In order to
overcome the intensive polynomial reduction needed in Groebner basis computation so that we can deal
with verifying large arithmetic circuits, the fanout-free regions (cones) of the circuit are extracted and
represented as corresponding polynomials automatically. For further improvement, we make use of
Gaussian elimination concept to perform specification polynomial reduction w.r.t Groebner basis using
a matrix representation of the problem. To evaluate the effectiveness of our verification technique, we
have applied it to very large arithmetic circuits with different architectures. The experimental results
show that the proposed verification technique is scalable enough so that large arithmetic circuits can
efficiently be verified in reasonable run time and memory usage.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction of abstraction. Most of them are based on canonical graph-based
As the size and complexity of digital systems increase continuous-
ly, design verification and debug are quickly becoming more
important. From a verification point of view, one of the most difficult
parts in complicated digital designs is arithmetic datapaths and their
components, such as multipliers and dividers. Arithmetic circuits are
the main part in many computational intensive designs, e.g. Digital
Signal Processing (DSP) units in multimedia applications. The com-
plicated and specialized nature of these arithmetic architectures
requires custom design which makes the implementation error-
prone. Therefore, verification of arithmetic circuits in a fast and pre-
cise way plays an important role in a digital system design flow.

Formal verification methods make use of mathematical tech-
niques to insure the integrity of a design with respect to some
desired characteristics. Several formal methods have been pro-
posed to verify the correctness of arithmetic circuits in higher level
representations like Binary Decision Diagrams (BDDs), which are
not scalable because they suffer from space and time explosion
problems when dealing with large arithmetic circuits especially
multipliers [16,17].

On the other hand, recently some techniques for verification of
bit-level implementations using the theory of Groebner basis have
been proposed [6,7,9]. However, these techniques are computa-
tionally intensive and are not scalable to large arithmetic circuits.

Addressing the above problems, this paper proposes a formal
verification technique to verify gate level circuits that implement
integer arithmetic circuits so that their specifications are given as
polynomial functions fspec. The goal of the verifier is to guarantee
the equivalence of fspec and gate level implementation fimp. In fact
our proposed method uses Groebner basis theory to effectively ver-
ify large arithmetic circuits. This theory enables us to formulate the
verification problem as an ideal membership testing. Fig. 1 shows
our proposed verification technique which takes a gate level circuit
(fimp) and its high level specification (fspec) as inputs. In order to
check whether fimp is functionally equivalent to fspec or not, first
of all, the gate level circuit is converted to Boolean polynomials

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.01.007&domain=pdf
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Fig. 1. Proposed verification technique for large arithmetic circuits.
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by extraction of fanout free regions (which are referred to as cones)
and mapping cones to polynomials. We automatically exploit the
cones in order to achieve a smaller number of circuit polynomials.
We will discuss how to find them based on a backtracking algo-
rithm and obtaining their equivalent polynomials in Section 4. As
we will see in Section 3, the ideal membership testing requires
Groebner basis computation which is computationally extensive.
In order to remove the need of this computation, a topological
order of polynomials’ variables (eke polynomials’ terms) is utilized
in Section 4. This ordering eliminates the computation of Groebner
basis as well as making the initial set of the circuit polynomials (F)
Groebner basis itself. Then the equivalence checking is performed
by polynomial manipulation and reduction of the specification
polynomial (fspec) over Groebner basis polynomials (F) [10]. We call
this step Groebner basis reduction or polynomial reduction.

As will be discussed in Section 3, the mathematical manipula-
tions (Groebner basis reduction) contain polynomial divisions
and multiplications which are complicated in terms of run time
and memory usage as the intermediate polynomials may become
very large. In order to overcome these intensive computations,
we utilize the modification of F4 algorithm [24] for computing
Groebner basis reduction on a matrix which represents the verifi-
cation problem. By using this method, we will be able to verify
large arithmetic circuits in reasonable run time and memory space
usage as experimentally shown in Section 6. In summary, our
contributions in this work are as follows:

� Extracting a finite set of Boolean polynomials from the gate
level implementation by looking for fanout free regions (cones).
In contrast to [18–20], this method is applicable even when half
adder and full adders cannot be extracted due to the local opti-
mizations which are usually done by synthesis tools (Section 4).
� In contrast to [29] in which we looked only for repetitive compo-

nents (which needs some information about repetitive compo-
nents provided as a library), the proposed method in this work
enables us to reduce the number of polynomials significantly so
that the verification time decreases dramatically while we do
not have any information about the repetitive components.
� Determining a suitable variable ordering for cones’ polynomials

in such a way that the leading terms of the circuit polynomials
become relatively prime to avoid Groebner basis computation
(Sections 3 and 4).
� Improving F4 algorithm and using Gaussian elimination to per-

form polynomial reduction efficiently so that a sequence of
polynomial divisions can be efficiently computed (Section 5).
The paper is organized as follows: Section 2 provides a brief
review of related work. In Section 3 we briefly describe some
mathematical background as well as Horner Expansion Diagrams
(HEDs) [14,15]. Section 4 presents our proposed verification tech-
nique in detail. Section 5 describes our approach to use Gaussian
elimination in order to perform the Groebner basis reductions.
The experimental results are shown in Section 6 and Finally, Sec-
tion 7 concludes the paper.
2. Related work

There is a large amount of literature on equivalence verification
of arithmetic circuits against their specifications. A variety of cano-
nical, directed acyclic graph (DAG) representations such as BDDs
[2], ⁄BMDs [17] and their various word-level extensions [25] have
been used for verification of Boolean functions. However, they are
not able to deal with large arithmetic circuits especially multipliers
due to bit-blasting as well as existence of different architectures. A
combination of TEDs [4] has been proposed to represent multivari-
ate polynomials. However, TEDs need word level information of
circuits which are not available at the gate level. Decision making
procedures and term-rewriting have been proposed in [3,32].
However, none of the above-mentioned methods are able to solve
the verification problem of integer arithmetic circuits practically as
they utilize modular arithmetic concept.

Extracting arithmetic operations such as half-adders (HAs) and
full-adders (FAs) from the gate-level implementation and generat-
ing an Arithmetic Bit Level (ABL) model to compare with the high-
level specification is another approach in verification of arithmetic
circuits [18]. This technique checks different XOR tree structures
exhaustively to verify carry signals. The complexity of this check-
ing is exponential in terms of run-time. More efficient approaches
are presented in [19,34] which make use of reverse-engineering
and bit level adder (BLA) representation to derive a network of
half-adders from the gate level implementation of multipliers
and dividers. However, such methods suffer from dealing with
pin-swap optimizations due to the fact that swapping of the partial
product bits does not change the functionality of the design. The
debugging algorithm in [20] can be useful for solving the above
mentioned problems.

Several methods based on computer symbolic algebra are taken
into account for verification of arithmetic circuits as well. In [5],
arithmetic circuits are described with weighted number systems
so arithmetic formula and equivalence checking can be performed
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by formula manipulations based on Groebner basis. This technique
requires hierarchical information of circuit which is often unavail-
able. Symbolic algebra methods also have been used for verifica-
tion of arithmetic circuits over finite rings [21]. This method
checks the difference between two polynomial expressions by uti-
lizing ‘‘vanishing polynomial’’ theory which actually limits its
applicability to verification of arithmetic circuits due to using a
word level representation of the datapaths.

The theorem provers [27], high-level/RTL Synthesis tools [28]
and symbolic algebra tools have been integrated for verification
purposes. However, applying them to integer arithmetic circuits
is not straightforward as their models are over rational numbers’
field. The authors of [13] have presented a computer algebra based
technique to model and verify multiplier circuits over Galois fields
F2

k. They have shown how to model Galois field multipliers as a
polynomial system in F2

k. They have also shown how to formulate
the verification problem as a membership test in a corresponding
ideal. In order to overcome the cost of Buchberger’s algorithm
[6], they have analyzed the circuit topology and derived a suitable
term order to represent polynomials. This approach, however, is
not applicable to integer multipliers due to carry propagation
issues.

The authors of [7] have proposed a formal verification tech-
nique in which ABL components [18] are modeled by polynomials
over unique ring and their normal forms are computed with
respect to the Groebner basis over rings Z2

k using computer algebra
techniques. In order to overcome the expensive Groebner basis
computation problem, they have proposed a technique to directly
generate individual output polynomials in terms of primary inputs.
However, there is no systematic way for comparing such polyno-
mials against the specification so preprocessing of such very large
polynomials is needed for computation of the normal form algo-
rithm. In [11,9], arithmetic circuits are represented as a network
of half adder, full adders, and inverters and modeled as a system
of linear equations. Functional correctness of the gate level imple-
mentation is proved by computing its algebraic signature (which is
the outcome of standard linear programming solvers) and compar-
ing it with the reference signature provided by the designer. It
should be noted that if half adder and full adders could not be
extracted due to optimizations done by synthesis tools, this
technique would not be applicable.

3. Preliminaries

In this section, we briefly describe mathematical concepts
including Groebner basis, Horner Expansion Diagram (HED) and
the F4 algorithm. The mathematical backgrounds of Groebner basis
are mostly based on [10].

3.1. Algebraic preliminaries

Let M ¼ xa1
1 xa2

2 � � � xan
n be a monomial in variables x1, x2, . . ., xn

where all of the exponents a1, a2, . . ., an and variables are non-
negative integers. Let K be a computable field and K[x1, x2, . . . , xn]
be the polynomial ring in n variables. A finite linear combination
of monomials in x1, x2, . . . , xn is a polynomial f. Polynomial
f e K [x1, x2, . . . , xn] is written as f = c1M1 + c2M2 + � � � + cdMd, where
c1, c2, . . . , cd are coefficients and M1, M2, . . . , Md are monomials.

Let f1, f2, . . . , fs be polynomials in K [x1, x2, . . . , xn]. Then
hf 1; f 2; . . . ; f si ¼

Ps
i¼1 hif i : h1;h2; . . . ;hs 2 K½x1; x2; . . . ; xn�

� �
is called

an ideal I. So the finite set of polynomials F = {f1, f2, . . . , fs} is called
generator or basis of ideal I.

It has been shown in [12] that every arbitrary ideal other than
{0} has a basis with specific properties which is called Groebner
basis. Groebner basis enables us to solve ideal membership prob-
lem. To describe Groebner basis, first we need to cover some basic
definitions.

Definition 1. A monomial ordering on the set of monomials is any
relation ‘‘>’’ on Zn

P0 with the following properties:

i. Every nonempty set has the smallest element under >.
ii. If a > b and c 2 Zn

P0 then a + c > b + c.

It is a well-ordering on the set of all monomials such that
multiplication with a monomial preserves the ordering. With
respect to the monomial ordering, we recall some definitions to
obtain Groebner basis from a finite set of polynomials.
Definition 2. Let f =
P

aaaXa be a nonzero polynomial in
K [x1, x2, . . . , xn] and > be a monomial order.

i. LM (f) is the leading monomial (the largest monomial) of f
with respect to >.

ii. LC (f) is the leading coefficient of f with respect to >.
iii. LT (f) is the leading term of f with respect to >. The initial

term of f is LT (f) = LM (f) � LC (f).
Definition 3 (normal form). Let f, g and t be polynomials in
K [x1, x2, . . . , xn]. We say that g – 0 is reducible to t by f if there is
a term M which can be divided by LM (f) in g and
t ¼ g � c�M

LCðf Þ�LMðf Þ � f . Where coefficient of M is c. It is denoted by

g!
f

t. Let F be a polynomial set in K [x1, x2, . . . , xn], we say g is

reducible to h with respect to F if there is a sequence of polynomi-
als f1, f2, . . . , fs e F that !

f 1

!
f 1

� � � !
f s

h. We can also represent it by

g!
F

h. If we cannot reduce h with respect to F anymore, we say h

is normal form of g.

An ideal I may have many different generators: it is possible to
have sets of polynomials F = {f1, . . . , fs} and G = {g1, . . . , gt} such that
I = hf1, . . . , fsi = hg1, . . . , gti. Some generating sets are better because
they represent ideal and its attribute better. A Groebner basis is
one of them because it can answer to many polynomial decision
questions such as polynomial membership testing in an ideal.
We have utilized the ability of Groebner basis to determine the
membership status of a polynomial in an ideal in our verification
technique.

Definition 4 (membership testing). The set G of ideal I is a
Groebner basis if and only if for all polynomial f e I the remainder
of reducing f by polynomials of G is zero. This process is called
membership testing of f over ideal I and denoted by 8f 2 I; f !

G
0.
Definition 5. Let I � K½x1; x2; . . . ; xn� be an ideal other than {0}. The
ideal of leading terms generated by the elements of LT (I) is
denoted as hLT (I)i where LTðIÞ ¼ fcxa : there exists f 2 I
with LTðf Þ ¼ cxag.
Definition 6 (Groebner basis). With respecting to a monomial
order, a finite subset G ¼ fg1; g2; . . . ; gtg of an ideal I is said to be
a Groebner basis of I if hLTðg1Þ; . . . ; LTðgtÞi ¼ hLTðIÞi.



Fig. 2. Buchberger’s algorithm.
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To compute Groebner basis over a field, Buchberger’s algorithm
in Fig. 2 is used. It makes use of a polynomial reduction technique
named S-polynomial as defined below.

Definition 7 (S-polynomial). Let f, g e K[x1, x2, . . . , xn] be nonzero
polynomials. The S-polynomial of f and g is defined as Spoly

ðf ; gÞ ¼ LCMðLMðf Þ;LMðgÞÞ
LTðf Þ � f � LCMðLMðf Þ;LMðgÞÞ

LTðgÞ � g, where LCM(a, b) is a

notation for the least common multiple of a and b.
Example 1. Let f ¼ 6x4
1x5

2 þ 24x2
1 � x2 and g ¼ 2x2

1x7
2 þ 4x3

2 þ 2x3

and we have x1 > x2 > x3. The S-polynomial of f and g is defined
below:

LMðf Þ ¼ x4
1x5

2; LMðgÞ ¼ x2
1x7

2 and LCMðx4
1x5

2; x
2
1x7

2Þ ¼ x4
1x7

2

Spoly ðf ; gÞ ¼ x4
1x7

2

6x4
1x5

2

� f � x4
1x7

2

2x2
1x7

2

� g ¼ 4x2
1x2

2 �
1
6

x3
2 � 2x2

1x3
2 � x2

1x3:

It is obvious that S-polynomial computation cancels leading
terms of the polynomials. As shown in Fig. 2, Buchberger’s algo-
rithm first calculates all S-polynomials (lines 4–6 of Fig. 2) and
then add non-zero S-polynomials to the basis G (line 8). This pro-
cess repeats until all of the computed S-polynomials become zero
with respect to G. It is obvious that Groebner basis can be extreme-
ly large so its computation may take a long time and it may need
large storage memory as well. The time and space complexity of
this algorithm are exponential in terms of the sum of the total
degree of polynomials in F, plus the sum of the lengths of the poly-
nomials in F [12]. So when the size of F increases, the verification
process would be very slow or in the worst-case would be
infeasible.
Definition 8. V(I) is the affain variety of ideal I such that
VðIÞ ¼ fða1; a2; . . . ; anÞjf ðða1; a2; . . . ; anÞ ¼ 0 for all f 2 Igwhere ai -
e K. For every generating set of ideal I such as Groebner basis G, we
have V(I) = V(G).
Definition 9. f is a member of ideal I if it vanishes on V(I) or
V(I) � V(f).

This definition says that f would be a member of I if it agrees
with all the solutions f1 = f2 = � � � = fs = 0. This problem is called ‘‘va-
riety subset’’ in [10]. In other words, in order to find out whether
polynomial f is a member of ideal I or not, we need to check the
possibility of vanishing f on V(I). On the other hand, regarding
Definition 8, if G is Groebner basis of ideal I, V(I) = V(G). This means
that instead of checking whether f is vanishes on V(I), we can just
check whether f can be reduced to 0 by polynomials of G.
3.2. F4 Algorithm

In computer algebra, the F4 algorithm [24] computes the Groeb-
ner basis efficiently. The mathematical principle of this algorithm
is the same as that of the Buchberger’s algorithm. However, in
order to expedite the Buchberger’s algorithm, the F4 algorithm
avoids classic reduction procedure which may need many interme-
diate computations. Instead, it uses symbolic pre-computation and
sparse linear algebra methods to make the computation parallel in
two ways: (1) selecting a subset of pairs (in contrast to Buchberg-
er’s algorithm that chooses one pair; line 4 of Fig. 2) and computing
more than one S-polynomial in each iteration and (2) using sparse
linear algebra on a matrix (in contrast to Buchberger’s algorithm
that chooses a reducer among current set of G; line 6 of Fig. 2) to
compute the normal form.

The F4 algorithm takes a finite set of polynomials, F, and a set of
ordered monomial as inputs and constructs a sparse matrix such
that the element Mij shows the coefficient of the jth monomial of
the ith polynomial. The matrix may grow up because new polyno-
mials followed by new monomials might be increased during the
computation of the algorithm. The algorithm makes use of a
well-known reduction technique on matrix, i.e., Gaussian elimina-
tion, to perform the normal form computation of the Buchberger’s
algorithm (according to Definition 3). The F4 algorithm generates a
set of polynomials, G, as output such that G is Groebner basis of F.

3.3. Horner Expansion Diagram (HED)

According to Definition 9, in order to check whether the polyno-
mial specification (fspec) is a member of the Groebner basis comput-
ed from the circuit polynomials, we should check whether fspec is
reduced to zero by the Groebner basis. Such a reduction phase
can be done by division of fspec over the Groebner basis polynomi-
als. In order to perform such a division process efficiently we make
use of a canonical decision diagram called HED which is successful-
ly used for equivalence checking and debugging purposes [8,26].
The HED is a binary graph-based representation where the alge-
braic expression F(X,Y, . . .) is expressed by a first-order lineariza-
tion of the Taylor series expansion [14,15]. Suppose variable X is
the top variable of F(X,Y, . . .). Eq. (1) shows F(X,Y, . . .), where const
is independent of the variable X, while linear is the coefficient of
variable X.

FðX;Y; . . .Þ ¼ FðX ¼ 0; . . .Þ þ X � ½F 0ðX ¼ 0; . . .Þ þ . . .�
¼ const þ X � linear ð1Þ

HED is a directed acyclic graph G = (VR,ED) with vertex set VR and
edge set ED. While the vertex set VR consists of two types of ver-
tices: Constant (C) and Variable (V), the edge set indicates integer
values as weight attribute. A Constant node v has a value val(v) e Z
as its attribute. A Variable node v has three attributes: an integer
variable var(v) and two children const(v) and linear(v) e {V,C}.
Hence, each vertex v in HED denotes an integer function f(y) defined
recursively as follows:

� If y e C (is a Constant node), then f(y) = val(y).
� If y e V (is a Variable node), then f(y) = const(y) + var(y) �

linear(y).

Fig. 3 illustrates how f ðx; y; zÞ ¼ 24� 8zþ 12yþ 12yz�
6x� 6x2z is represented by the HED. Let the ordering of variables
be x > y > z. First the decomposition w.r.t. x is taken into account.
As shown in Fig. 3(a), after rewriting f ðx; y; zÞ ¼ ð24� 8zþ 12yþ
12yzÞ þ xð�6� 6xzÞ based on (1), const and linear parts will be
24� 8zþ 12yþ 12yz and �6 � 6xz, respectively. The linear part is
decomposed w.r.t. variable x again due to x2 sub-monomial. After



Fig. 3. HED representation of 24 � 8z + 12y + 12yz � 6x � 6x2z: (a) decomposition w.r.t. variable x, (b) decomposition w.r.t. variables x and y, and (c) decomposition w.r.t.
variables x, y and z.

Fig. 4. Polynomial model of each gate.
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that, the decomposition is performed w.r.t. variable y and then z as
shown in Fig. 3(b). In order to reduce the size of the HED represen-
tation, redundant nodes are removed and isomorphic sub-graphs
are merged. In Fig. 3(b), 24 � 8z, 12 + 12z and �6z are rewritten
by 8[3 + z(�1)], 12[1 + z(1)] and �6[0 + z(1)], respectively. In order
to normalize the weights, gcdð12;12Þ ¼ 12, gcdð8;12Þ ¼ 4 and
gcdð�6;�6Þ ¼ �6 are taken to extract common factors. Finally,
Fig. 3(c) shows the normalized graph where gcdð4;�6Þ ¼ 2 is taken
to extract the common factor between out-going edges from x
node. In this representation, dashed and solid lines indicate const
and linear parts, respectively. Note that in order to have a simpler
graph; paths to 0-terminal have not been drawn in Fig. 3(c). Obvi-
ously, we can access to constant and linear parts of fspec w.r.t. a top
variable with O(1). We have described the merit of using the HED
in Section 5.
4. Proposed verification technique

Formally, the verification problem of an arithmetic circuit
is characterized by a given specification like f spec :¼
Y � ðA � Bþ C � DÞ where A–D are decimal representation of
circuit’s primary inputs and Y is decimal representation of the
circuit’s primary outputs. The decimal representation can be

achieved by a polynomial like A ¼
Pn

i¼02iai where ai 2 B ¼ f0;1g
and a0 and an are the least significant and most significant bits of
primary input A, respectively.

Our goal is to check the correctness of gate level implementa-
tion (fimp) against the specification polynomial (fspec). In the first
step, gate level circuit is modeled to a series of polynomials. We
denote these polynomials as {f1, . . . , fs} over K[x1, . . . ,xn]. The specifi-
cation polynomial is also considered as fspec e K[x1, . . . ,xn]. The gen-
erated Ideal I = hf1, . . . , fsi is taken into account and therefore the
verification problem would become a membership testing of fspec

over ideal I. As discussed before, to check whether fspec is a member
of ideal I, its Groebner basis should be computed and then we need
to check whether fspec is reduced by the polynomials of the
Groebner basis.

Keep in mind that the most time consuming task of Buchberg-
er’s algorithm is the S-polynomials computation and reduction.
A simple idea to speed up such computations is to somehow
remove this step from the algorithm. On the other hand, it is
obvious that S-polynomial of a pair fi and fj whose leading power
products are relatively prime, can be ignored. In other words, if
LCM(LM(fi), LM(fj)) = LM(fi) � LM(fj) then Spolyðf i; f jÞ!

G
0. This

criterion is indicating that on those cases where the leading mono-
mials of f and g are relatively prime, Spoly(f,g) is always reduced to
0. Thus in Buchberger’s algorithm, we do not need to compute Spo-
ly(f,g). Therefore analyzing and deriving a suitable term order from
the given circuit can be quite useful, because it causes every poly-
nomial pair (f,g) in the generating set has relatively prime leading
monomials, then Spolyðf ; gÞ!
Gþ

0 for all pairs f and g. Consequently,

the polynomials {f1, f2, . . . , fs} extracted from the circuit (corre-
sponding to ideal I) and represented using such a term order would
itself constitute a Groebner basis of I. Although such a term order is
derived and the very same concept is proposed in [13], it has been
applied only to Galois field multipliers while in this work we are
dealing with integer arithmetic circuits including integer multipli-
ers. Note that, in our case, the variables are all Boolean, so their
degrees never increase. Another point is the fact that the outputs
of gates (cones) are represented as individual variables in the set
of polynomials.

We derive an order for polynomial terms based on a topological
analysis of the circuit. Since the circuit is acyclic, if we can repre-
sent each cone polynomial such that its output places in a higher
order than its inputs, then every two polynomials have relatively
prime leading monomial and therefore {f1, . . . , fs} is itself Groebner
basis. Note that, in our case, the variables are all binaries, so their
degrees never increase. Another point is the fact that the outputs of
cones are represented as individual variables in the set of
polynomials.

In order to show how such a term ordering reduces the compu-
tational complexity of Buchberger’s algorithm let us consider gate
level implementation of a two bit multiplier shown in Fig. 5 (in this
circuit, we suppose every gate is a cone). To make every polynomi-
al pair (f,g) relatively prime, the following variable ordering is
taken into account: {y3 > y2 > y1 > y0} > {w3 > w2} > {w0 > w1} >
{a1 > b1 > a0 > b0}. Polynomials extracted from the specification
(fspec) and the implementation ({f0, . . . , f7}: which is Groebner basis
because each polynomial pair (fi, fj) are relatively prime, are
described as follows:

f spec :¼ 8y3 þ 4y2 þ 2y1 þ y0 � ð2a1 þ a0Þð2b1 þ b0Þ
f 0 :¼ y0 � a0b0; LMðf 0Þ ¼ y0

f 1 :¼ w0 � a1b0; LMðf 1Þ ¼ w0

f 2 :¼ w1 � a1b1; LMðf 2Þ ¼ w1

f 3 :¼ w2 � a1b1; LMðf 3Þ ¼ w2

f 4 :¼ y1 � ðw0 þw1 � 2w0w1Þ; LMðf 4Þ ¼ y1

f 5 :¼ w3 �w0w1; LMðf 5Þ ¼ w3

f 6 :¼ y2 � ðw3 þw2 � 2w3w2Þ; LMðf 6Þ ¼ y2

f 7 :¼ y3 �w3w2; LMðf 7Þ ¼ y3



Fig. 5. Gate level implementation of a two bit unsigned multiplier.
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After computing Groebner basis {f1, . . . , fs}, the second step is to
reduce the specification polynomial (fspec) with respect to {f1, . . . , fs}.
In order to facilitate the reduction process, we can simultaneously
reduce fspec with respect to those polynomials which have outputs
at the same level. This step is done with several consecutive poly-
nomial divisions. First, the fspec is divided by f7 as LT(fspec) = 8 * y3

and LT(f7) = y3. Thus, LT(fspec) will be canceled by f7. The remainder
of this (R) step is divided by one of the f0, . . . , f6 which can cancel
the LT(R). The process will go on until we have a remainder that
cannot be divided any further by any of polynomials in F. In this
example, we will have zero for the remainder. The zero shows that
the design has implemented the specification correctly. Unfortu-
nately, as for circuits with more inputs, the number of variables
in polynomials increases greatly and therefore specification reduc-
tion over ideal Groebner basis of circuit’s polynomials becomes
impractical and we get a timeout for large circuits. Our idea to alle-
viate this issue is to attack the problem from two aspects: (1)
Reduce the number of circuit polynomials (Section 4.1 and Sec-
tion 4.2) and (2) Performing Groebner reduction more effectively
(Section 5).
Fig. 6. Finding repetitive compon
4.1. How to reduce circuit polynomials

In order to reduce the number of polynomials, in [29] we used
automata to extract those components which are being repeated in
the circuit and create only one polynomial for all of the existing
gates in these components. To find repetitive components, a tree-
based matching algorithm which utilizes Automata [22] is applied.
We have manually defined our components in a cell-library and we
have used automaton to represent the cell-library. This approach is
based on an encoding of the trees by strings of characters and on a
string recognition algorithm. For applying this method, we consid-
er our circuit as a rooted acyclic graph which is called subject
graph. The graph associated with library elements are called pat-
tern graphs which are also acyclic and rooted. The subject graph
is visited in a bottom up fashion and matches between cell libraries
and subject graph are found.

Fig. 6 shows a part of a large adder circuit [1]. In this circuit the
signal u computes the sum of signals a–e. This sum is computed in
a tree fashion to minimize delays. Signal v computes the corre-
sponding carry. As we can see in the figure, extracting half adders
and full adders is a hard task and almost impossible. However,
some repetitive components can be found by automata based on
our cell library which decreases the number of polynomials
significantly.

By applying this technique to the circuit in Fig. 6, the number of
polynomials decreases from 14 to 7. The number of variables is
also reduced from 19 to 12. The corresponding polynomials are
as follows:

f 1 :¼ u� ðaþ bþ h� 2ab� 2ah� 2bhþ 4abhÞ
f 2 :¼ h� ðc þ dþ e� 2ce� 2de� 2dc þ 4cdeÞ
f 3 :¼ f � ðdþ e� 2deÞ
f 4 :¼ j� ðaþ f � 2af Þ
f 5 :¼ k� ðcjþ bjþ cb� 2cjbÞ
f 6 :¼ l� ðadþ ed� 2aedÞ
f 7 :¼ v � ðkþ l� 2klÞ

As mentioned in [29], first we set the cell library manually, and
then we build the pattern graphs and automata automatically, and
search the subject graph in order to find repetitive components. If
ents in an optimized circuit.
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we are aware of the structure of the circuit, the patterns in the cell
library can be chosen wisely and repetitive components can be
found more efficiently; therefore, the number of circuit polynomi-
als will be reduced significantly. Otherwise, the automata searches
the subject tree for some components which are not repetitive in
the circuit, and it is a waste of the time as the number of circuit
polynomials may not reduce dramatically. To address this issue,
we have improved the method of [29] by looking for fanout-free
regions of the circuit and modeling them to polynomials that is
explained in the following subsection.
4.2. Cone extraction algorithm

In order to solve the above mentioned problem and being able
to apply our method on different arithmetic circuit structures,
we take the fanout-free regions (which are called cones) of the
arithmetic circuit and represent them as a single polynomial. This
method works even if repetitive components and the cell library
components cannot be identified.

We use the algorithm shown in Fig. 7 to extract the cones of the
circuit. The inputs of this algorithm are the gate level implementa-
tion of the circuit and the list of its fanouts. Please note that the list
of fanouts can be automatically extracted. For doing so, the circuit
is modeled as an acyclic graph such that every gate is a node in this
graph. When the output degree of a node is greater than one, a fan-
out is detected. In order to cover the circuit completely, we consid-
er primary outputs as fanouts.

In the algorithm shown in Fig. 7, FO is the list of circuit fanouts
and G(V,E) is the graph model of the gate level arithmetic circuit.
Set V and E represent the gates and their connections, respectively.
This graph contains some further information about level of each
gate, the number of inputs of gates and their fanouts. The output
of this algorithm is a list of circuit polynomials that each polynomi-
al is equivalent to a cone.

The algorithm traverses the circuit from the primary outputs,
picks a fanout (line 3 of Fig. 7) and backtracks it, until the
algorithm reaches either another fanout or primary inputs of the
circuit (line 5). The found region which is called a cone is represent-
ed as a polynomial. This fanout is also marked as seen (line 8). The
algorithm continues until there is no unseen fanout in its input list
of fanouts (line 9). In order to derive a polynomial for each cone,
first we model each gate with a polynomial based on equations
shown in Fig. 4. Then, we treat each of these polynomials as an
input of the next connected gate and combine them to have a sin-
gle polynomial which represents the related cone. By definition,
the cones have just one output signal which is member of B. The
correspondence polynomial of the output signal is equal to the
Fig. 7. Fanout free region and circuit polynomials extraction algorithm (Cone
Extraction Algorithm).
mathematical manipulation of input signal. So it should also be
member of B.

Let us consider a part of a large adder circuit shown in Fig. 6
again. Although extracting half adders and full adders is not possi-
ble in most cases, we could extract cones (as shown in Fig. 8) by
applying Cone Extraction Algorithm to this circuit. The correspond-
ing polynomials are as follows:

f 1 : ¼ u� ðaþ bþ c þ f � 2ab� 2ac � 2bc � 2af � 2bf � 2cf

þ 4abc þ 4abf þ 4acf þ 4bcf � 8abcf

f 2 :¼ f � ðdþ e� 2deÞ

f 3 :¼v�ðabþacþadþaeþdeþbf þcf �2abc�2abd�2acd
�2abe�2ace�2ade�2abf �2acf �2bcf þ2abcd

þ2abceþ2abdeþ2acde�2bcdeþ4abcf þ2abdf þ2acdf

þ2abef þ2acef �2bdef �2cdef �4abcdf �4abcef þ4bcdeÞ
4.3. Verification problem formulation

After using Cone Extraction Algorithm, the gate level implemen-
tation of the circuit is modeled as a set of polynomials. If conei has
mi inputs, its correspondence polynomial maps Bmi to B (i.e.,
f i : Bmi ! B). We denote these polynomials as F = {f1, . . . , fs}.

conei : f iðx1; x2; . . . ; xmÞ mod2

After extracting polynomials from the circuit, we need to gener-
ate a Groebner basis. This phase, however, is not needed because
instead of computing Groebner basis, we have derived an order
for polynomial terms in such a way that the circuit polynomials
become themselves Groebner basis, as discussed before. To this
end, the only phase should be done is to see whether the specifica-
tion is reduced to zero by the circuit polynomials or not.

If the circuit has M primary inputs and N primary outputs, the
specification polynomial is considered as f spec : BM ! BN. As
B � Z and both specification polynomials and circuit polynomials
have coefficients in Z so we consider ring Z½x1; x2; . . . ; xn�=2N as
computational ring Z½X�=2N . Therefore, the verification problem
becomes a membership testing of fspec in ideal Ihf1, . . . , fsi over
Z½X�=2N . With respect to Definition 9, fspec is a member of Ideal I
if it vanishes on V(I). On the other hand, we know that V(I) = V(G)
if G is Groebner basis of ideal I. Therefore, fspec would be a member
of Ideal I if it can be reduced to zero by polynomials of G. To check
this, instead of using the Buchberger’s algorithm we have
employed the concept of F4 algorithm that will be explained in
the next section.

5. Improving Groebner basis reduction

The polynomial reduction (polynomial division) f w.r.t Groeb-
ner basis is the most computationally intensive part of our verifica-
tion technique. This reduction becomes a bottleneck when the
circuit is very large and the polynomial set F = {f1, f2, . . . , fs} is
extremely large. This reduction can be done by using existing
computer algebra systems e.g., SINGULAR [23] which is a
general-purpose computer algebra tool. It should be noted that it
does not have a special data structure for Groebner basis reduction
in the case of arithmetic verification problems. Moreover,
SINGULAR also limits the number of variables so that it can be used
in the system up to 32,767 variables and therefore its usage is
limited to small circuits [30].

The polynomial reduction of a set is equal to some sequential
polynomial division with respect to a specified monomial ordering.
Considering P as the number of polynomials, this division should



Fig. 8. Finding fanout free regions (cones) in an optimized circuit.
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be performed P times. In each iteration, regarding the top variable
of each polynomial, we need to divide the terms of the polynomial
into two sections: the terms which are independent of the top vari-
able, and the terms which are served as the coefficient of the top
variable. Division is continued by multiplication of coefficient of
the top variable into polynomial whose leading term is equal to
the top variable and subtracting the product from polynomial
specification. In each iteration, we also need to simplify polynomi-
als by eliminating terms with same monomials and reduce them to
one term. Obviously, the complexity of the entire algorithm in
terms of CPU time is really high.

In [29], we have performed such division process by using a
canonical word-level decision diagram called Horner Expansion
Diagram (HED) [14,15]. As explained in Section 3.3, the HED is a
binary graph-based representation which is able to represent poly-
nomial function by factorizing variables recursively. In this work,
however, in order to further improve the computation time of
the reduction process, we make use of Gaussian elimination which
implements polynomial division using row-reduction on a matrix
representation of the circuit polynomials. It is obvious that the
most computationally intensive part of our verification method,
i.e., sequential divisions, has been modeled by Gaussian elimina-
tion. The algorithm generates rows of matrix M of specification
and circuit polynomials corresponding to our verification problem.
The rows and columns of the matrix are setup in such a way that
polynomial division can be subsequently performed by applying
Gaussian elimination on matrix M.

Now let us show how the Groebner basis reduction ðf spec!
G
þrÞ

can be represented and solved on a matrix. Fig. 9 shows our pro-
posed algorithm. In this algorithm, the polynomial fspec and the
set of polynomials F = {f1, f2, . . . , fs} correspond to the specification
and circuit implementation, respectively. The set V specifies vari-
able ordering with respect to the topological analysis of the circuit.
Note that each variable corresponds to either primary inputs/out-
puts or internal wires. The set Mons is considered as an ordered list
of monomials of F [ fspec which forms the columns of matrix M. As
our goal is to reduce the specification polynomial fspec w.r.t. the cir-
cuit polynomials (which is Groebner basis), we insert fspec as the
first row of the matrix M (MFirstRow = {fspec}: line 1 of Fig. 9). Then,
for every item in V which is not primary input, this algorithm finds
a polynomial ft 2 F such that LM(ft) is equal to the ith item of V. This
way, it cancels the leading term of fspec by using TwoRowGausRed
function. This function subtracts the second row from the first
row in order to eliminate the first nonzero element of the first
row. Our topological order ensures that after encountering the first
primary input, the set V contains no other internal variables or pri-
mary outputs. This algorithm ends when set V reaches a primary
input because there is no circuit polynomial which its leading
monomial is equal to primary inputs. Please note that, Mons is con-
structed and sorted once to fill the rows of matrix M. The output of
this algorithm is the last row of M whose columns correspond to
monomials of Mons. This row shows the result of our verification
problem f !

G
þr as a polynomial which is the remainder of Groeb-

ner basis reduction of specification polynomial.
One interesting point to be noted here is that, in contrast to the

original F4 algorithm [24] which produces all of the rows of the
matrix and then tries to reduce the matrix by using Gaussian
elimination, our proposed algorithm produces only two rows of
this matrix in each iteration and performs the Gaussian elimina-
tion on them (TwoRowGausRed function: line 7 of Fig. 9). The first
row is the intermediate polynomial specification which gets its
value from the previous iteration. The algorithm finds the second
row in such a way that it can eliminate the first nonzero elements
of the first row. Because the columns of the matrix are correspond-
ing to the ordered monomial set, the first nonzero element of inter-
mediate specification is always its leading term. In other words,
the algorithm finds a polynomial from the circuit polynomials to
cancel the leading term of an intermediate specification polynomi-
al by finding a polynomial which its leading term is equal to the
leading term of intermediate specification. The following example
shows how our proposed technique works.

Example 2. Let us consider the verification problem of two bit
integer multiplier shown in Fig. 4. The specification polynomial is
f spec ¼ 8y3 þ 4y2 þ 2y1 þ y0 � ð4a1b1 þ 2a0b1 þ 2a1b0 þ a0b0Þ and
circuit polynomials are f 0 ¼ y0 � a0b0, f 1 ¼ w0 � a1b0, f 2 ¼
w1 � a0b1, f 3 ¼ w2 � a1b1, f 4 ¼ y1 � ðw0 � 2w0w1 þw1Þ, f 5 ¼ w3�
w0w1, f 6 ¼ y2 � ðw3 � 2w3w2 þw2Þ and f 7 ¼ y3 �w3w2. As dis-
cussed in Section 4, the set F = {f0; f1; . . . ; f7} is itself Groebner
basis. The final step of the verification problem is to reduce f spec



Fig. 9. Improved Groebner basis reduction algorithm which performs Gaussian elimination on a matrix representation of the verification problem.
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w.r.t. F (Groebner basis). The topological ordering extracted from
the circuit would be {y3 > y2 > y1 > y0} > {w3 > w2} > {w0 > w1} >
{a1 > b1 > a0 > b0} and therefore V = {y3,y2,y1,y0,w3,w2,w0,w1,a1,
b1,a0,b0}.

The algorithm in Fig. 9 constructs the reduction of matrix M as
the following steps. The initial value of MFirstRow is equal to fspec

and Mons = {y3, y2, y1, y0, w3w2, w3, w2, w0w1, w0, w1, a1b1, a0b1, a1b0,
a0b0}. When i = 0, V[i] = y3 which is equal to the leading monomial
of fspec so the algorithm finds ft so that its leading monomial is equal
to y3. It finds f7 = y3 � w3w2. Therefore, MFirstRow = {fspec} and
MSecondRow = {f7}. Then, TwoRowGausRed function subtracts 8 � f7

from fspec in order to cancel its leading term y3. When i = 1,
V[i] = y2 so ft = f6 = y2 � (w3 + w2 � 2w3w2). Therefore, MFirstRow =
{fspec� 8 � f7} and MSecondRow = {f6}. By continuing in this manner
as shown in Fig. 10, when i becomes 8, V[i] contains a primary input
and therefore the algorithm finishes. The last row of the reduced
matrix corresponds to the reduction f spec!

G
þr where r = 0 which

means the circuit is correctly implemented the two bit integer
multiplier.

Although the method of [30] has been applied to Galois field
arithmetic circuits, by applying it on integer arithmetic circuits,
it would encounter many serious problems. Their approach finds
a polynomial for each gate so that N circuit polynomials are
obtained if the gate level netlist contains N gates. The number of
variables is equal to the number of polynomials plus the number
of primary inputs. Table 1 shows that the number of monomials
is approximately 2.6 times more than the number of variables in
integer array multipliers. The F4 algorithm in [30] executes mon
times where mon is the number of monomials of all polynomials
whereas our algorithm executes var times where var is the number
of variables. It is worth noting that by finding the cones, as
explained in Section 4.2, the number of polynomials, variables
and monomials dramatically decreases. Table 1 shows the merit
of our work. Extracting the cones decreases the number of polyno-
mials approximately 2 times. Another point is that as all of leading
monomials contain only one variable, the procedure of leading
monomial cancelation does not return any new monomial and
therefore, unlike [30], we do not need to update and sort the set
Mons in each iteration. Hence, at the beginning of the algorithm,
Mons is constructed and sorted once.

Furthermore, in contrast to F4 algorithm used in [30], the
algorithm shown in Fig. 9 does not build the whole verification
matrix once. It produces only two rows of this matrix in each itera-
tion and performs the Gaussian elimination on them. Therefore, it
does not face memory problem in large arithmetic circuits that
they have more than 115,000 gates and 300,000 monomials (these
parameters show the size of matrix that the algorithm in [30] can
deal with in the case of 128 bits integer multiplier). Although they
have applied their method on Galois field multipliers which have
less complication in comparison with integer arithmetic circuits
(because Galois field arithmetic circuits skip carry chains) our
verification time is better than that of [30]. Our verification method
is implemented as a fully automated tool. Our method takes gate-
level implementation of arithmetic circuit fimp and its correspon-
dence specification polynomial fspec as inputs. The tool extracts
the cones of the circuit and represents them by equivalence poly-
nomials. It also derives a monomial ordering by considering the
level of outputs and inputs of each cone to represent their
polynomials.

As the matrix M is being constructed, using algorithm shown in
Fig. 9, the Gaussian elimination is also performed to reduce fspec by
the circuit polynomials. The following example shows our com-
plete procedure to verify a two bits integer adder.

Example 3. Consider a two bit adder with carry in and carry out.
We want to verify the equivalence between its implementation
and specification. The specification polynomial is f spec ¼
4carryþ 2sum1 þ sum0 � ð2a1 þ a0 þ 2b1 þ b0 þ cinÞ. Fig. 11 shows
the gate level implementation. The first step of our verification
problem is extracting polynomial circuits. Each gate has an
algebraic functionality and we can derive a polynomial for it. In
order to reduce the number of polynomials, the algorithm shown
in Fig. 9 is used to extract the cones of this circuit. In Fig. 11 these
regions are shown with gates in different colors. Then, the
polynomial of each region is extracted and therefore the circuit
polynomials will be as follows:
f 1 ¼ sum0 � ða0 þ b0 þ cin� 2a0b0 � 2a0cin� 2b0cinþ 4a0b0cinÞ
f 2 ¼ w1 � ða0b0 þ cinb0 þ a0cin� 2a0b0cinÞ
f 3 ¼ sum1 � ða1 þ b1 þw1 � 2a1b1 � 2a1w1 � 2b1w1 þ 4a1b1w1Þ
f 4 ¼ carry� ða1b1 þ a1w1 þ b1w1 � 2a1b1w1Þ

By considering the output level of each cone, the variable ordering
would be: carry > sum1 > sum0 > w1 > a1 > b1 > a0 > b0 > cin.



Fig. 10. Example of proposed Groebner basis reduction technique using Gaussian elimination.

Table 1
Comparison of the number of polynomials, variables and monomial in two verification approaches.

Size #Gates Technique in [30] Our proposed method

#Polys #Vars #Mons #Polys #Vars #Mons

4 88 88 96 110 40 48 92
8 400 400 416 934 176 192 440

16 1696 1696 1728 4326 736 768 1904
32 6976 6976 7040 18,046 3008 3072 7904
64 28,288 28,288 28,416 73,261 12,160 12,288 32,192

128 113,920 113,920 114,176 294,779 48,896 49,152 129,920

Average improvement in comparison with the technique in [30] 2.33� 2.32� 3.98�
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With respect to this variable ordering the polynomial set
F ¼ f 1; f 2; f 3; f 4 is itself a Groebner basis of ideal
I ¼ hf 1; f 2; f 3; f 4i. Therefore, the final step of our verification problem
is the reduction of f spec w.r.t. Groebner basis, i.e., set F. This step is
performed with Gaussian elimination which is shown in Fig. 12.
As we can see in this figure, the last row of the matrix contains
nothing but zero; which means that the outcome of the verification
problem returns true and the gate level implementation is function-
ally equivalent to the specification.
6. Experimental setup and results

In order to evaluate our proposed arithmetic circuit verification
technique, it was implemented in JAVA applied to several arith-
metic circuits. All experiments were conducted on a 2.4 GHz with
Intel Core™ i5 processor and 4 GB RAM running Linux.

The proposed verification flow has five different parts as shown
in Fig. 13. First, gate level netlist of the arithmetic circuit, which its
functionality is being verified, is fed into the tool as input. In order



Fig. 11. The gate level implementation of two bit adder with carry-in and carry-out. The gates with same colors show a fanout free region.

Fig. 12. Reduction result based on Gaussian elimination.
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Design Is CorrectThere are some 
Bugs in Design
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Fig. 13. Flowchart of our verification tool.
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to generate the gate level implementation of such circuits, their
high level descriptions are synthesized using Xilinx synthesis tool
or any other commercial synthesis tools. This netlist is converted
into a graph. In order to produce the graph efficiently, every gate
is considered as a node in the graph, which has a unique output
and output’s name. Then a hash map is taken into account, with
outputs’ names of the gates as keys and gates themselves as its val-
ues. Using this hash map, the corresponding graph of the arith-
metic circuit is deployed. In the next step, circuit’s cones are
found which are used in our main algorithm shown in Fig. 9 as
the input. In the third step, these cones are described as polynomi-
als. For every gate existing in a cone, we extract a polynomial based
on the equations listed in Fig. 4. Then, these polynomials, which
are derived from gates, are combined and one polynomial is pro-
duced to represent the cone. In this step, for every cone in the
graph, we have one polynomial. These polynomials create an ideal.

In another step, reduction of the specification using Groebner
basis (the set of polynomials extracted from the circuit) is per-
formed. For this purpose, we use the algorithm shown in Fig. 9.
Please note that in all steps of developing our tool, we have tried
to optimize the techniques as much as possible, which can be
sensed from the results. For doing so, wherever it was necessary
to retrieve data, hash sets were used; whenever it was required
to find an item, the lookup was done by having a hash map, which
led us to have every item in O(1); every sorting was done using
quick sort and tree sort, which are the fastest sorting algorithms
in our case. In the last step, we analyze the Groebner basis reduc-
tion; if the outcome is zero, it means that the gate level circuit has
been implemented correctly; otherwise it indicates that there has
been a design error in the implementation.

The developed tool has been evaluated on different arithmetic
circuits. To compare the results of this work with other related
works, we have considered three experiments:

Experiment 1: in the first experiment, which is labeled as
‘‘Without using reduction techniques’’ in the tables, like [13], for each
gate one polynomial (regarding the specified topological order) is
created, and Groebner basis reduction is performed as a sequence
of divisions.
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Experiment 2: in the second experiment, to improve the per-
formance, an attempt for decreasing the number of polynomials
was made. To this end, a library containing those components
which are likely to be occurring in the circuits more than the others
has been manually created. Based on this library, an automaton is
defined, and using this automaton, we look for the components
defined in the library in the circuit graph. For every repetitive com-
ponent and the rest of existing gates of the circuit, a polynomial is
defined [29]. This is obvious that this method is efficient when we
have information about the structure of arithmetic circuits. The
polynomials are gained based on the topological order, which
was described earlier. As a result, these polynomials are Groebner
basis themselves. To expedite the Groebner basis reduction proce-
dure, every polynomial is represented by the HED. The results of
this experiment are labeled as ‘‘Using Automata and HED’’ in the
tables.

Experiment 3: in the third experiment, the method in [30] has
been applied on integer arithmetic circuits. In this method, for each
gate existing in the netlist, one polynomial is generated, regarding
topological order. To reduce these polynomials, the F4 algorithm
has been utilized. As described in Section 5, this work needs to
build the whole matrix for implementing F4 algorithm, which
decreases its performance significantly. The experimental results
of this method are shown as the third experiment in the tables,
labeled as ‘‘Technique in [30]’’.

To better analyze the performance of the proposed technique in
this paper, the number of polynomials and the number of variables
are also considered as comparison parameters. Note that in all
tables N, #vars and #polys are the size of operands, the number
of variables and the number of polynomials, respectively. MO
shows lack of memory during the execution. Verification experi-
ments are conducted with several different arithmetic structures
like carry-lookahead adders, ripple carry adders, array multipliers
and their combinations. We also applied our method on optimized
circuits where extracting HAs and FAs is really hard and almost
impossible.

In Tables 2 and 3, the results of unsigned array multipliers,
where the bit width varies from 3 bits to 128 bits, are shown.
Table 2
Verification time of N � N array multipliers using several methods (MO = out of 4 GB mem

Size (N) Without using reduction techniques BDD ABC Yice

#vars #polys CPU time CPU time CPU time CPU

3 39 33 0.87 0.09 3.87 0.02
4 80 72 1.38 0.19 5.24 0.05
8 384 368 14.16 0.343 35.72 2.54

16 1664 1632 110.76 MO 253.09 TO
32 6912 6848 4054.32 MO 5405.41 TO
64 28,160 28,032 TO MO TO TO
96 63,360 63,168 TO MO TO TO

128 212,862 212,606 TO MO TO TO

Table 3
Verification time of bug-free and buggy N � N array multipliers using our proposed meth

Size (N) #vars #polys Bug-free circuit CPU time

3 27 21 0.01
4 48 40 0.02
8 192 176 0.06

16 768 736 0.17
32 3072 3008 1.21
64 12,288 12,160 20.08
96 28,950 28,758 121.61

128 49,152 48,896 535.51
160 94,440 94,120 1762.8
Table 2 shows that Experiment 1 is giving timeouts for 64 bits or
more. The timeouts, TO, is set to 4 h. We have compared these
results with those of binary decision diagrams, equivalence check-
er and SMT solvers in columns BDD, ABC [33] and Yices [31], respec-
tively. As it can be seen, BDD, ABC and Yices have very poor results.
Experiment 2 is taking 7 times more than the proposed method of
this paper. Experiment 3 suffers from memory out of 96 bits or
more and as it can be seen in the table that it is really slow.

Table 3 shows the results of the proposed method for both bug
free and buggy multipliers. Our method is able to verify 160 bits
multipliers in less than 33 min even in the case of multiple bugs.
Table 4 shows the verification time of carry look-ahead adders.
As it can be seen in this table, Experiment 1 is giving timeout for
96 bit or more. The performance of Experiment 2 is not good
enough because repetitive components cannot be extracted effi-
ciently in carry look–ahead adders. The result of Experiment 3
shows that the technique in [30] is more than four orders of mag-
nitudes slower than our proposed method and it is giving memory
out (MO) for 128 bits and more.

It should be noted that we have improved our previous work
[29] in two ways: (1) by looking for cones in the circuit in order
to reduce the number of polynomials when we do not have any
information about the repetitive components in the circuit and
(2) using a two-row matrix representation and Gaussian elimina-
tion to perform the reduction process more efficiently. This way,
we are able to verify large arithmetic circuits in appropriate run
times.

Table 5 shows the verification time of arithmetic circuits that
implement the function of A � B + C � D. In these circuits the bit
width varies from 4 bits to 128 bits. As shown in this table, Experi-
ment 1 faces timeouts for 64 bits or more. Experiment 2 is more
than 10 times slower than the proposed method. Experiment 3
faces memory out for 96 bits or more. The results show that the
proposed method is three orders of magnitudes faster than other
techniques mentioned in Table 5.

Table 6 shows the verification result of arithmetic circuits that
their function is A � B + C + D. The parameter N shows the size of
inputs A and B which vary from 4 bits to 128 bits. In this table, if
ory; TO = timeout of 4 h; CPU time is given in seconds).

s Using automata and HED [29] Technique in [30]

time #vars #polys CPU time #vars #polys CPU time

15 7 0.00 39 33 0.43
21 13 0.00 80 72 0.65
63 47 0.05 384 368 0.86

235 203 0.38 1664 1632 2.14
959 895 5.72 6912 6848 712.59

3004 2876 143.95 28,160 28,032 1754.02
7931 7739 701.54 63,360 63,168 MO

24,751 24,495 4965.29 212,862 212,606 MO

od (CPU time is given in seconds).

Buggy circuit (Single) CPU time Buggy circuit (Multiple) CPU time

0.03 0.03
0.02 0.05
0.09 0.08
0.18 0.13
1.51 1.57

22.81 23.08
123.78 125.09
572.85 583.14

1894.2 1925.08



Table 4
Verification time of carry-lookahead adders (MO = out of 4 GB memory; TO = timeout of 4 h; CPU time is given in seconds).

Size (N) Without using reduction techniques Using Automata and HED [29] Technique in [30] Our proposed method

#vars #polys CPU time #vars #polys CPU time #vars #polys CPU time #vars #polys CPU time

4 36 28 0.69 17 9 0.01 36 28 0.05 23 15 0.04
8 143 127 5.13 49 33 0.19 143 127 0.32 34 18 0.15

16 891 759 41.05 226 194 0.29 891 759 0.74 341 309 0.11
32 4044 3980 1613.27 587 523 4.09 4044 3980 39.87 1521 1457 0.84
64 11,656 11,528 5701.06 2191 2063 90.85 11,656 11,528 683.03 3139 3011 1.97
96 29,974 29,782 TO 5519 5327 276.14 29,974 29,782 1098.00 7018 6826 5.04

128 121,030 120,774 TO 19,327 14,071 1558.31 121,030 120,774 MO 25,288 25,032 135.2

Average improvement in comparison with
‘‘without using reduction techniques’’

6.10� 12.95� 497.50� 0.00� 0.00� 0.00004� 7.72� 7.85� 12106.61�

Table 5
Verification time of A�B + C � D (MO = out of 4 GB memory; TO = timeout of 4 h; CPU time is given in seconds).

Size (N) Without using reduction techniques Using Automata and HED [29] Technique in [30] Our proposed method

#vars #polys CPU time #vars #polys CPU time #vars #polys CPU time #vars #polys CPU time

4 176 168 6.58 74 58 0.06 176 168 0.07 112 96 0.01
8 980 964 54.78 278 246 0.47 980 964 0.69 416 384 0.14

16 3884 3852 1553.87 1135 1071 6.84 3884 3852 7.54 1600 1536 0.57
32 13,824 13,760 7512.00 7970 7842 706.32 13,824 13,760 1426.87 6272 6144 5.02
64 60,315 60,187 TO 23,128 22,872 4636.03 60,315 60,187 8531.02 24,832 24,576 122.58
96 177,110 176,918 TO 53,709 53,325 7848.61 177,110 176,918 MO 64,083 62,891 612.62

128 327,981 327,725 TO 104,023 103,511 13707.05 327,981 327,725 MO 140,680 140,604 1235.05

Average improvement in comparison with
‘‘without using reduction techniques’’

3.07� 3.09� 64.05� 0.00� 0.00� 1.60� 2.46� 1.55� 1316.37�

Table 6
Verification time of optimized circuit A � B + C + D where the first adder is a carry-lookahead adder and the second one is a ripple carry adder (MO = out of 4 GB memory;
TO = timeout of 4 h; CPU time is given in seconds).

Size (N) Without using reduction
techniques

Using Automata and HED [29] Technique in [30] Our proposed method

#vars #polys CPU time #vars #polys CPU time #vars #polys CPU time #vars #polys CPU time

4 102 94 1.79 51 43 0.05 102 94 0.06 56 48 0.01
8 541 525 20.37 289 273 0.47 541 525 0.89 271 255 0.10

16 2170 2138 185.79 806 774 4.99 2170 2138 9.02 724 692 0.29
32 9098 9034 4680.20 3744 3680 183.75 9098 9034 212.15 3206 3142 9.65
64 36,839 36,839 TO 19,672 19,544 3847.17 36,839 36,839 13238.0 17,585 17,457 174.01
96 99,976 99,784 TO 44,402 44,210 7400.14 99,976 99,784 TO 37,042 36,850 365.24

128 387,260 387,004 TO 175,477 175,221 TO 387,260 387,004 MO 83,320 83,064 6872.26

Average improvement in comparison with
‘‘without using reduction techniques’’

2.19� 2.20� 2.97� 0.00� 0.00� 1.49� 3.77� 3.78� 349.91�
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the size of A and B inputs are N, the size of inputs C and D will be 2N
and 2N + 1, respectively. The addition needed in A � B + C has been
implemented by carry look-ahead adders. These circuits are delay-
optimized designs obtained by commercial synthesis tool. The net-
list of the optimized circuit is the input of our verification tool. The
goal of this experiment is to show that the proposed method does
not depend on the structure of arithmetic circuits and it has com-
parable results for optimized circuits in which extracting repetitive
components like HAs and FAs are not easy. The results in Table 6
show that all of the experiments except the proposed method
are failed to verify these circuits.

7. Conclusion and future works

A formal method to verify arithmetic circuits using computer
algebra techniques has been proposed in this paper. Our method
formally proves that the given fspec and gate-level combinational
arithmetic circuit fimp are equivalent. The verification problem is
formulated as membership testing of the specification polynomi-
al fspec in an ideal where ideal I = hf1, f2, . . ., fsi generated by
extracted polynomials from the circuit. Subsequently, a Groebner
basis G of the ideal I should be computed and the ideal member-
ship test can be decided via Groebner basis reduction. We ana-
lyze the circuit topology and drive an order that makes the
initial polynomial set itself a Groebner basis. The final step of
verification is the reduction of the polynomial fspec w.r.t Groeb-
ner basis. To have this reduction efficiently, we have performed
it through Gaussian elimination on a matrix representation of
the problem.

In our future work, we will focus on formal debugging of arith-
metic circuits based on Groebner basis method. We will detect and
correct single and multiple design errors that occurred in arith-
metic circuits based on analyzing the remainder of the Groebner
basis reduction.
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